Flückiger Matthias, Ludwig Markus
University of York, York, United Kingdom.
CESifo, Munich, Germany.
Jahrb Reg Wiss. 2023;43(1):1-27. doi: 10.1007/s10037-023-00185-6. Epub 2023 May 15.
Spatial networks are known to be informative about the spatiotemporal transmission dynamics of COVID-19. Using district-level panel data from Germany that cover the first 22 weeks of 2020, we show that mobility, commuter and social networks all predict the spatiotemporal propagation of the epidemic. The main innovation of our approach is that it incorporates the whole network and updated information on case numbers across districts over time. We find that when disease incidence increases in network neighbouring regions, case numbers in the home district surge one week later. The magnitude of these network transmission effects is comparable to within-district transmission, illustrating the importance of networks as drivers of local disease dynamics. After the introduction of containment policies in mid-March, network transmission intensity drops substantially. Our analysis suggests that this reduction is primarily due to a change in quality-not quantity-of interregional movements. This implies that blanket mobility restrictions are not a prerequisite for containing the interregional spread of COVID-19.
空间网络已知能提供有关新冠病毒时空传播动态的信息。利用德国2020年首22周的地区层面面板数据,我们表明出行、通勤和社交网络都能预测疫情的时空传播。我们方法的主要创新之处在于它纳入了整个网络以及各地区随时间推移的病例数更新信息。我们发现,当网络相邻地区的疾病发病率上升时,本地区的病例数会在一周后激增。这些网络传播效应的规模与地区内传播相当,说明了网络作为本地疾病动态驱动因素的重要性。3月中旬实施遏制政策后,网络传播强度大幅下降。我们的分析表明,这种下降主要是由于区域间流动质量而非数量的变化。这意味着全面的出行限制并非遏制新冠病毒区域间传播的先决条件。