Suppr超能文献

将供应链中断建模并缓解为一个双层网络流问题。

Modeling and mitigating supply chain disruptions as a bilevel network flow problem.

作者信息

Glogg René Y, Timonina-Farkas Anna, Seifert Ralf W

机构信息

École Polytechnique Fédérale de Lausanne (EPFL), EPFL-CDM-MTEI-TOM, ODY 1.03, Station 5, 1015 Lausanne, Switzerland.

International Institute for Management Development (IMD), Chemin de Bellerive 23, 1003 Lausanne, Switzerland.

出版信息

Comput Manag Sci. 2022;19(3):395-423. doi: 10.1007/s10287-022-00421-3. Epub 2022 Feb 28.

Abstract

Years of globalization, outsourcing and cost cutting have increased supply chain vulnerability calling for more effective risk mitigation strategies. In our research, we analyze supply chain disruptions in a production setting. Using a bilevel optimization framework, we minimize the total production cost for a manufacturer interested in finding optimal disruption mitigation strategies. The problem constitutes a convex network flow program under a chance constraint bounding the manufacturer's regrets in disrupted scenarios. Thus, in contrast to standard bilevel optimization schemes with two decision-makers, a leader and a follower, our model searches for the optimal production plan of a manufacturer in view of a reduction in the sequence of his own scenario-specific regrets. Defined as the difference in costs of a , which considers the disruption as unknown until it occurs, and a benchmark , which predicts the disruption in the beginning of the planning horizon, the regrets allow measurement of the impact of scenario-specific production strategies on the manufacturer's total cost. For an efficient solution of the problem, we employ generalized Benders decomposition and develop customized feasibility cuts. In the managerial section, we discuss the implications for the risk-adjusted production and observe that the regrets of long disruptions are reduced in our mitigation strategy at the cost of shorter disruptions, whose regrets typically stay far below the risk threshold. This allows a decrease of the production cost under rare but high-impact disruption scenarios.

摘要

多年的全球化、外包和成本削减增加了供应链的脆弱性,这就需要更有效的风险缓解策略。在我们的研究中,我们分析了生产环境中的供应链中断情况。使用双层优化框架,我们为有兴趣找到最优中断缓解策略的制造商最小化总生产成本。该问题构成了一个机会约束下的凸网络流规划,该机会约束限制了制造商在中断情况下的遗憾。因此,与具有领导者和追随者两个决策者的标准双层优化方案不同,我们的模型从减少制造商自身特定情景遗憾序列的角度寻找最优生产计划。遗憾被定义为将中断视为直到发生才知晓的情况下的成本与在规划期开始时预测中断的基准情况下的成本之差,它可以衡量特定情景生产策略对制造商总成本的影响。为了有效解决该问题,我们采用广义Benders分解并开发定制的可行性割平面。在管理部分,我们讨论了对风险调整生产的影响,并观察到在我们的缓解策略中,长时间中断的遗憾以短时间中断的遗憾为代价得以减少,短时间中断的遗憾通常远低于风险阈值。这使得在罕见但影响巨大的中断情景下生产成本得以降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3e7/8882721/9766cb8e7189/10287_2022_421_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验