Suppr超能文献

BurstDECONV:一种信号去卷积方法,用于揭示活细胞中转录爆发的机制。

BurstDECONV: a signal deconvolution method to uncover mechanisms of transcriptional bursting in live cells.

机构信息

LPHI, University of Montpellier and CNRS, Place Eugène Bataillon, Montpellier 34095, France.

IGMM, University of Montpellier and CNRS, 1919 Rte de Mende, Montpellier 34090, France.

出版信息

Nucleic Acids Res. 2023 Sep 8;51(16):e88. doi: 10.1093/nar/gkad629.

Abstract

Monitoring transcription in living cells gives access to the dynamics of this complex fundamental process. It reveals that transcription is discontinuous, whereby active periods (bursts) are separated by one or several types of inactive periods of distinct lifetimes. However, decoding temporal fluctuations arising from live imaging and inferring the distinct transcriptional steps eliciting them is a challenge. We present BurstDECONV, a novel statistical inference method that deconvolves signal traces into individual transcription initiation events. We use the distribution of waiting times between successive polymerase initiation events to identify mechanistic features of transcription such as the number of rate-limiting steps and their kinetics. Comparison of our method to alternative methods emphasizes its advantages in terms of precision and flexibility. Unique features such as the direct determination of the number of promoter states and the simultaneous analysis of several potential transcription models make BurstDECONV an ideal analytic framework for live cell transcription imaging experiments. Using simulated realistic data, we found that our method is robust with regards to noise or suboptimal experimental designs. To show its generality, we applied it to different biological contexts such as Drosophila embryos or human cells.

摘要

实时监测转录过程可以深入了解这一复杂基本过程的动态。研究表明,转录是不连续的,在活性时期(爆发)之间存在一个或多个不同寿命的非活性时期。然而,从活细胞成像中解码时间波动并推断出引起这些波动的不同转录步骤是一个挑战。我们提出了 BurstDECONV,这是一种新的统计推断方法,可将信号轨迹分解为单个转录起始事件。我们利用连续聚合酶起始事件之间的等待时间分布来识别转录的机制特征,如限速步骤的数量及其动力学。与替代方法相比,我们的方法在精度和灵活性方面具有优势。独特的功能,如直接确定启动子状态的数量以及同时分析几个潜在的转录模型,使 BurstDECONV 成为实时细胞转录成像实验的理想分析框架。使用模拟的真实数据,我们发现我们的方法对噪声或次优实验设计具有稳健性。为了展示其通用性,我们将其应用于不同的生物学背景,如果蝇胚胎或人类细胞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b25/10484743/63253c01b259/gkad629figgra1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验