Nicoll Andrew G, Szavits-Nossan Juraj, Evans Martin R, Grima Ramon
School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom.
Nat Commun. 2025 Mar 22;16(1):2833. doi: 10.1038/s41467-025-58127-4.
What features of transcription can be learnt by fitting mathematical models of gene expression to mRNA count data? Given a suite of models, fitting to data selects an optimal one, thus identifying a probable transcriptional mechanism. Whilst attractive, the utility of this methodology remains unclear. Here, we sample steady-state, single-cell mRNA count distributions from parameters in the physiological range, and show they cannot be used to confidently estimate the number of inactive gene states, i.e. the number of rate-limiting steps in transcriptional initiation. Distributions from over 99% of the parameter space generated using models with 2, 3, or 4 inactive states can be well fit by one with a single inactive state. However, we show that for many minutes following induction, eukaryotic cells show an increase in the mean mRNA count that obeys a power law whose exponent equals the sum of the number of states visited from the initial inactive to the active state and the number of rate-limiting post-transcriptional processing steps. Our study shows that estimation of the exponent from eukaryotic data can be sufficient to determine a lower bound on the total number of regulatory steps in transcription initiation, splicing, and nuclear export.
通过将基因表达的数学模型与mRNA计数数据拟合,可以了解转录的哪些特征?给定一组模型,对数据进行拟合会选择一个最优模型,从而确定一种可能的转录机制。尽管这种方法很有吸引力,但其效用仍不明确。在这里,我们从生理范围内的参数中采样稳态单细胞mRNA计数分布,并表明它们不能用于可靠地估计非活性基因状态的数量,即转录起始中的限速步骤数量。使用具有2、3或4个非活性状态的模型生成的超过99%的参数空间分布,可以用具有单个非活性状态的模型很好地拟合。然而,我们表明,在诱导后的许多分钟内,真核细胞的平均mRNA计数会增加,遵循幂律,其指数等于从初始非活性状态到活性状态所经过的状态数与转录后加工限速步骤数之和。我们的研究表明,从真核数据估计指数足以确定转录起始、剪接和核输出中调控步骤总数的下限。