Suppr超能文献

利用生命体征对急诊科潜在意外休克进行早期预测。

EARLY PREDICTION OF UNEXPECTED LATENT SHOCK IN THE EMERGENCY DEPARTMENT USING VITAL SIGNS.

机构信息

Smart Health Lab, Research Institute of Future Medicine, Samsung Medical Center, Seoul, South Korea.

Department of Computer Science, Indiana University Bloomington, Bloomington, Indiana.

出版信息

Shock. 2023 Sep 1;60(3):373-378. doi: 10.1097/SHK.0000000000002181. Epub 2023 Jul 29.

Abstract

Objective/Introduction : Sequential vital-sign information and trends in vital signs are useful for predicting changes in patient state. This study aims to predict latent shock by observing sequential changes in patient vital signs. Methods : The dataset for this retrospective study contained a total of 93,194 emergency department (ED) visits from January 1, 2016, and December 31, 2020, and Medical Information Mart for Intensive Care (MIMIC)-IV-ED data. We further divided the data into training and validation datasets by random sampling without replacement at a 7:3 ratio. We carried out external validation with MIMIC-IV-ED. Our prediction model included logistic regression (LR), random forest (RF) classifier, a multilayer perceptron (MLP), and a recurrent neural network (RNN). To analyze the model performance, we used area under the receiver operating characteristic curve (AUROC). Results : Data of 89,250 visits of patients who met prespecified criteria were used to develop a latent-shock prediction model. Data of 142,250 patient visits from MIMIC-IV-ED satisfying the same inclusion criteria were used for external validation of the prediction model. The AUROC values of prediction for latent shock were 0.822, 0.841, 0.852, and 0.830 with RNN, MLP, RF, and LR methods, respectively, at 3 h before latent shock. This is higher than the shock index or adjusted shock index. Conclusion : We developed a latent shock prediction model based on 24 h of vital-sign sequence that changed with time and predicted the results by individual.

摘要

目的/引言:连续的生命体征信息和生命体征趋势对于预测患者状态的变化很有用。本研究旨在通过观察患者生命体征的连续变化来预测潜在的休克。

方法

本回顾性研究的数据集中包含了 2016 年 1 月 1 日至 2020 年 12 月 31 日期间共 93194 例急诊(ED)就诊的患者数据,以及 Medical Information Mart for Intensive Care(MIMIC)-IV-ED 数据。我们通过无替换的随机抽样将数据分为训练和验证数据集,比例为 7:3。我们使用 MIMIC-IV-ED 进行外部验证。我们的预测模型包括逻辑回归(LR)、随机森林(RF)分类器、多层感知机(MLP)和递归神经网络(RNN)。为了分析模型性能,我们使用了接收者操作特征曲线下的面积(AUROC)。

结果

我们使用满足预设标准的 89250 例患者就诊数据开发了一个潜在休克预测模型。我们使用满足相同纳入标准的 142250 例 MIMIC-IV-ED 患者就诊数据对预测模型进行外部验证。在潜在休克发生前 3 小时,RNN、MLP、RF 和 LR 方法预测潜在休克的 AUROC 值分别为 0.822、0.841、0.852 和 0.830,这高于休克指数或调整后的休克指数。

结论

我们基于随时间变化的 24 小时生命体征序列开发了一个潜在休克预测模型,并通过个体预测结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7f/10510834/d467a4717f73/shock-60-373-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验