Suppr超能文献

将基于重症监护病房的非侵入性模型扩展用于预测急诊科潜在休克:一项探索性研究。

Extension of an ICU-based noninvasive model to predict latent shock in the emergency department: an exploratory study.

作者信息

Wu Mingzheng, Li Shaoping, Yu Haibo, Jiang Cheng, Dai Shuai, Jiang Shan, Zhao Yan

机构信息

Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.

出版信息

Front Cardiovasc Med. 2024 Dec 23;11:1508766. doi: 10.3389/fcvm.2024.1508766. eCollection 2024.

Abstract

BACKGROUND

Artificial intelligence (AI) has been widely adopted for the prediction of latent shock occurrence in critically ill patients in intensive care units (ICUs). However, the usefulness of an ICU-based model to predict latent shock risk in an emergency department (ED) setting remains unclear. This study aimed to develop an AI model to predict latent shock risk in patients admitted to EDs.

METHODS

Multiple regression analysis was used to compare the difference between Medical Information Mart for Intensive Care (MIMIC)-IV-ICU and MIMIC-IV-ED datasets. An adult noninvasive model was constructed based on the MIMIC-IV-ICU v3.0 database and was externally validated in populations admitted to an ED. Its efficiency was compared with efficiency of testing with noninvasive systolic blood pressure (nSBP) and shock index.

RESULTS

A total of 50,636 patients from the MIMIC-IV-ICU database was used to develop the model, and a total of 2,142 patients from the Philips IntelliSpace Critical Care and Anesthesia (ICCA)-ED and 425,087 patients from the MIMIC-IV-ED were used for external validation. The modeling and validation data revealed similar non-invasive feature distributions. Multiple regression analysis of the MIMIC-IV-ICU and MIMIC-IV-ED datasets showed mostly similar characteristics. The area under the receiver operating characteristic curve (AUROC) of the noninvasive model 10 min before the intervention was 0.90 (95% CI: 0.84-0.96), and the diagnosis accordance rate (DAR) was above 80%. More than 80% of latent shock patients were identified more than 70 min earlier using the noninvasive model; thus, it performed better than evaluating shock index and nSBP.

CONCLUSION

The adult noninvasive model can effectively predict latent shock occurrence in EDs, which is better than using shock index and nSBP.

摘要

背景

人工智能(AI)已被广泛用于预测重症监护病房(ICU)中危重症患者潜在休克的发生。然而,基于ICU的模型在急诊科(ED)环境中预测潜在休克风险的效用仍不明确。本研究旨在开发一种AI模型,以预测急诊科收治患者的潜在休克风险。

方法

采用多元回归分析比较重症监护医学信息集市(MIMIC)-IV-ICU和MIMIC-IV-ED数据集之间的差异。基于MIMIC-IV-ICU v3.0数据库构建了一个成人无创模型,并在急诊科收治的人群中进行了外部验证。将其效率与无创收缩压(nSBP)和休克指数测试的效率进行比较。

结果

共使用MIMIC-IV-ICU数据库中的50636例患者来开发该模型,共使用飞利浦IntelliSpace重症监护与麻醉(ICCA)-ED中的2142例患者和MIMIC-IV-ED中的425087例患者进行外部验证。建模和验证数据显示出相似的无创特征分布。对MIMIC-IV-ICU和MIMIC-IV-ED数据集的多元回归分析显示出大多相似的特征。干预前10分钟无创模型的受试者操作特征曲线下面积(AUROC)为0.90(95%CI:0.84-0.96),诊断符合率(DAR)高于80%。使用无创模型可提前70分钟以上识别超过80%的潜在休克患者;因此,其表现优于评估休克指数和nSBP。

结论

成人无创模型可有效预测急诊科潜在休克的发生,优于使用休克指数和nSBP。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dfe/11701063/aa9c81b0db16/fcvm-11-1508766-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验