Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland, USA; email:
Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
Annu Rev Pharmacol Toxicol. 2024 Jan 23;64:231-253. doi: 10.1146/annurev-pharmtox-022823-113946. Epub 2023 Jul 31.
Here we discuss approaches to K-Ras inhibition and drug resistance scenarios. A breakthrough offered a covalent drug against K-Ras. Subsequent innovations harnessed same-allele drug combinations, as well as cotargeting K-Ras with a companion drug to upstream regulators or downstream kinases. However, primary, adaptive, and acquired resistance inevitably emerge. The preexisting mutation load can explain how even exceedingly rare mutations with unobservable effects can promote drug resistance, seeding growth of insensitive cell clones, and proliferation. Statistics confirm the expectation that most resistance-related mutations are in , pointing to the high probability of cooperative, same-allele effects. In addition to targeted Ras inhibitors and drug combinations, bifunctional molecules and innovative tri-complex inhibitors to target Ras mutants are also under development. Since the identities and potential contributions of preexisting and evolving mutations are unknown, selecting a pharmacologic combination is taxing. Collectively, our broad review outlines considerations and provides new insights into pharmacology and resistance.
在这里,我们讨论了 K-Ras 抑制和耐药情况的方法。一项突破提供了一种针对 K-Ras 的共价药物。随后的创新利用了相同等位基因的药物组合,以及将 K-Ras 与上游调节剂或下游激酶的伴随药物进行共靶向治疗。然而,原发性、适应性和获得性耐药性不可避免地会出现。预先存在的突变负荷可以解释即使是非常罕见的、没有观察到影响的突变如何促进耐药性,从而为不敏感的细胞克隆的生长和增殖提供种子。统计数据证实了大多数与耐药相关的突变都发生在 的预期,这指向了协同的、相同等位基因效应的高概率。除了针对 Ras 的靶向抑制剂和药物组合外,针对 Ras 突变体的双功能分子和创新的三复合物抑制剂也正在开发中。由于预先存在的和不断进化的突变的身份和潜在贡献是未知的,因此选择药物组合是具有挑战性的。总的来说,我们广泛的综述概述了考虑因素,并为药理学和耐药性提供了新的见解。