Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India.
Adv Healthc Mater. 2023 Oct;12(27):e2300621. doi: 10.1002/adhm.202300621. Epub 2023 Aug 13.
The endothelium-derived signalling molecule nitric oxide (NO) in addition to controlling multifarious servo-regulatory functions, suppresses key processes in vascular lesion formation and prevents atherogenesis and other vascular abnormalities. The conversion of NO into cytotoxic and powerful oxidant peroxynitrite (ONOO ) in a superoxide (O )-rich environment has emerged as a major reason for reduced NO levels in vascular walls, leading to endothelial dysfunction and cardiovascular complications. So, designing superoxide dismutase (SOD) mimetics that can selectively catalyze the dismutation of O in the presence of NO, considering their rapid reaction is challenging and is of therapeutic relevance. Herein, the authors report that SOD mimetic cerium vanadate (CeVO ) nanozymes effectively regulate the bioavailability of both NO and O , the two vital constitutive molecules of vascular endothelium, even in the absence of cellular SOD enzyme. The nanozymes optimally modulate the O level in endothelial cells under oxidative stress conditions and improve endogenously generated NO levels by preventing the formation of ONOO . Furthermore, nanoparticles exhibit size- and morphology-dependent uptake into the cells and internalize via the clathrin-mediated endocytosis pathway. Intravenous administration of CeVO nanoparticles in mice caused no definite organ toxicity and unaltered haematological and biochemical parameters, indicating their biosafety and potential use in biological applications.
内皮衍生的信号分子一氧化氮(NO)除了控制多种伺服调节功能外,还抑制血管损伤形成的关键过程,防止动脉粥样硬化和其他血管异常。在富含超氧化物(O )的环境中,NO 转化为细胞毒性和强氧化剂过氧亚硝酸盐(ONOO ),这已成为血管壁中 NO 水平降低的主要原因,导致内皮功能障碍和心血管并发症。因此,设计能够在存在 NO 的情况下选择性催化 O 歧化的超氧化物歧化酶(SOD)模拟物,考虑到它们的快速反应具有挑战性,并且具有治疗相关性。在此,作者报告说 SOD 模拟铈钒酸盐(CeVO )纳米酶有效地调节了两种重要的血管内皮固有分子 NO 和 O 的生物利用度,即使在没有细胞 SOD 酶的情况下也是如此。纳米酶在氧化应激条件下最佳地调节内皮细胞中的 O 水平,并通过防止 ONOO 的形成来提高内源性产生的 NO 水平。此外,纳米颗粒表现出大小和形态依赖性的细胞摄取,并通过网格蛋白介导的内吞作用途径内化。CeVO 纳米颗粒在小鼠中的静脉给药不会引起明确的器官毒性,也不会改变血液学和生化参数,表明其生物安全性和在生物应用中的潜在用途。