Suppr超能文献

细胞死亡预测:一种基于细胞成像的用于铁死亡和凋亡预测的深度学习框架。

CellDeathPred: a deep learning framework for ferroptosis and apoptosis prediction based on cell painting.

作者信息

Schorpp Kenji, Bessadok Alaa, Biibosunov Aidin, Rothenaigner Ina, Strasser Stefanie, Peng Tingying, Hadian Kamyar

机构信息

Research Unit Signaling and Translation, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany.

Helmholtz AI, Helmholtz Zentrum München, Neuherberg, Germany.

出版信息

Cell Death Discov. 2023 Jul 31;9(1):277. doi: 10.1038/s41420-023-01559-y.

Abstract

Cell death, such as apoptosis and ferroptosis, play essential roles in the process of development, homeostasis, and pathogenesis of acute and chronic diseases. The increasing number of studies investigating cell death types in various diseases, particularly cancer and degenerative diseases, has raised hopes for their modulation in disease therapies. However, identifying the presence of a particular cell death type is not an obvious task, as it requires computationally intensive work and costly experimental assays. To address this challenge, we present CellDeathPred, a novel deep-learning framework that uses high-content imaging based on cell painting to distinguish cells undergoing ferroptosis or apoptosis from healthy cells. In particular, we incorporate a deep neural network that effectively embeds microscopic images into a representative and discriminative latent space, classifies the learned embedding into cell death modalities, and optimizes the whole learning using the supervised contrastive loss function. We assessed the efficacy of the proposed framework using cell painting microscopy data sets from human HT-1080 cells, where multiple inducers of ferroptosis and apoptosis were used to trigger cell death. Our model confidently separates ferroptotic and apoptotic cells from healthy controls, with an average accuracy of 95% on non-confocal data sets, supporting the capacity of the CellDeathPred framework for cell death discovery.

摘要

细胞死亡,如凋亡和铁死亡,在发育、稳态以及急慢性疾病的发病过程中发挥着重要作用。越来越多的研究致力于探究各种疾病(尤其是癌症和退行性疾病)中的细胞死亡类型,这为通过调节细胞死亡来进行疾病治疗带来了希望。然而,识别特定细胞死亡类型的存在并非易事,因为这需要大量的计算工作和昂贵的实验检测。为应对这一挑战,我们提出了CellDeathPred,这是一种新颖的深度学习框架,它基于细胞绘画的高内涵成像技术,将发生铁死亡或凋亡的细胞与健康细胞区分开来。具体而言,我们纳入了一个深度神经网络,该网络能有效地将微观图像嵌入到具有代表性和判别力的潜在空间中,将学习到的嵌入分类为细胞死亡模式,并使用监督对比损失函数优化整个学习过程。我们使用来自人类HT - 1080细胞的细胞绘画显微镜数据集评估了所提出框架的有效性,在该数据集中使用了多种铁死亡和凋亡诱导剂来触发细胞死亡。我们的模型能够可靠地将铁死亡和凋亡细胞与健康对照区分开来,在非共聚焦数据集上的平均准确率为95%,这支持了CellDeathPred框架在细胞死亡发现方面的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfb3/10390533/7a5e6357b36a/41420_2023_1559_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验