Suppr超能文献

调节表面能以增强二硫化钼纳米片的制备 液相剥离:理解氯化铯的电化学吸附

Tuning Surface Energy to Enhance MoS Nanosheet Production Liquid-Phase Exfoliation: Understanding the Electrochemical Adsorption of Cesium Chloride.

作者信息

Chavalekvirat Panwad, Nakkiew Patlapa, Kunaneksin Tanatat, Hirunpinyopas Wisit, Busayaporn Wutthikrai, Iamprasertkun Pawin

机构信息

School of Bio-Chemical Engineering and Technology, Sirindhron International Institute of Technology, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand.

Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.

出版信息

Inorg Chem. 2023 Aug 14;62(32):12851-12861. doi: 10.1021/acs.inorgchem.3c01508. Epub 2023 Aug 1.

Abstract

Environmental pollution caused by radionuclides like Cs-137 and Cs-134 has increased global attention toward public health. Electrochemical adsorption has emerged as a feasible, rapid, and scalable method to treat contaminated water sources. However, graphene and its derivatives have limitations in ion adsorption physisorption, forming a double layer that restricts the electrode's adsorption capacity. To address this, we propose the use of molybdenum disulfide (MoS) with its extensive intercalation galleries of MoS nanosheets for cesium removal an electrochemical route. Liquid-phase exfoliation with water and -methyl-2-pyrrolidone (NMP) was then used to produce MoS nanosheets in a scalable quantity (high-yield production). The formation of a mixed solvent possessing relatively equivalent surface energy for exfoliation enabled us to achieve a remarkable exfoliation yield of up to 1.26 mg mL, which is one of the highest yields reported to date (without a surfactant being added) and to the best of our knowledge. The 35% v/v of water in NMP displayed a maximum yield while maintaining the structure of the as-exfoliated one. Water exceeding over 66.7% v/v led to the formation of MoO. Moreover, an insight into the cesium ion removal mechanism through the electrochemical route was demonstrated. It is found that the Cs removal follows electrochemical intercalation rather than adsorption. This work aids the understanding of cesium intercalation coupled with a mass-scale production method, which should lead to more efficient and cost-effective removal of radionuclides from contaminated water sources, opening new research avenues in materials and environmental science.

摘要

由铯 - 137和铯 - 134等放射性核素造成的环境污染已引起全球对公众健康的更多关注。电化学吸附已成为一种可行、快速且可扩展的处理受污染水源的方法。然而,石墨烯及其衍生物在离子吸附(物理吸附)方面存在局限性,会形成双层结构,限制电极的吸附能力。为解决这一问题,我们提出使用二硫化钼(MoS),利用其MoS纳米片广泛的插层通道通过电化学途径去除铯。然后使用水和N - 甲基 - 2 - 吡咯烷酮(NMP)进行液相剥离,以可扩展的量(高产率生产)制备MoS纳米片。形成具有相对等效表面能用于剥离的混合溶剂,使我们能够实现高达1.26 mg/mL的显著剥离产率,这是迄今为止报道的最高产率之一(在未添加表面活性剂的情况下,据我们所知)。NMP中35% v/v的水在保持剥离后结构的同时显示出最大产率。超过66.7% v/v的水会导致MoO的形成。此外,还展示了对通过电化学途径去除铯离子机制的深入了解。发现铯的去除遵循电化学插层而非吸附。这项工作有助于理解铯的插层以及大规模生产方法,这应该会导致从受污染水源中更高效且经济地去除放射性核素,为材料和环境科学开辟新的研究途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验