Suppr超能文献

高性能半导体纳米片:一种基于粉末的可扩展电化学剥离技术

High Performance Semiconducting Nanosheets a Scalable Powder-Based Electrochemical Exfoliation Technique.

作者信息

Wells Rebekah A, Zhang Miao, Chen Tzu-Heng, Boureau Victor, Caretti Marina, Liu Yongpeng, Yum Jun-Ho, Johnson Hannah, Kinge Sachin, Radenovic Aleksandra, Sivula Kevin

机构信息

Laboratory for Molecular Engineering of Optoelectronic Nanomaterials (LIMNO), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

Laboratory of Nanoscale Biology (LBEN), Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

出版信息

ACS Nano. 2022 Apr 26;16(4):5719-5730. doi: 10.1021/acsnano.1c10739. Epub 2022 Mar 15.

Abstract

The liquid-phase exfoliation of semiconducting transition metal dichalcogenide (TMD) powders into 2D nanosheets represents a promising route toward the scalable production of ultrathin high-performance optoelectronic devices. However, the harsh conditions required negatively affect the semiconducting properties, leading to poor device performance. Herein we demonstrate a gentle exfoliation method employing standard bulk MoS powder (pressed into pellets) together with the electrochemical intercalation of a quaternary alkyl ammonium. The resulting nanosheets are produced in high yield (32%) and consist primarily of mono-, bi-, triatomic layers with large lateral dimensions (>1 μm), while retaining the semiconducting polymorph. Exceptional optoelectronic performance of nanosheet thin-films is observed, such as enhanced photoluminescence, charge carrier mobility (up to 0.2 cm V s in a multisheet device), and photon-to-current efficiency while maintaining high transparency (>80%). Specifically, as a photoanode for iodide oxidation, an internal quantum efficiency up to 90% (at +0.3 V vs Pt) is achieved (compared to only 12% for MoS nanosheets produced via ultrasonication). Further using a combination of fluorescence microscopy and high-resolution scanning transmission electron microscopy (STEM), we show that our gently exfoliated nanosheets possess a defect density (2.33 × 10 cm) comparable to monolayer MoS prepared by vacuum-based techniques and at least three times less than ultrasonicated MoS nanoflakes. Finally, we expand this method toward other TMDs (WS, WSe) to demonstrate its versatility toward high-performance and fully scalable van der Waals heterojunction devices.

摘要

将半导体过渡金属二硫属化物(TMD)粉末液相剥离成二维纳米片,是实现超薄高性能光电器件规模化生产的一条有前景的途径。然而,所需的苛刻条件会对半导体性能产生负面影响,导致器件性能不佳。在此,我们展示了一种温和的剥离方法,该方法使用标准的块状MoS粉末(压制成颗粒)以及季铵盐的电化学插层。所得纳米片的产率很高(32%),主要由具有大横向尺寸(>1μm)的单原子层、双原子层和三原子层组成,同时保留了半导体多晶型。观察到纳米片薄膜具有优异的光电性能,如增强的光致发光、电荷载流子迁移率(在多层器件中高达0.2 cm² V⁻¹ s⁻¹)以及光子到电流的效率,同时保持高透明度(>80%)。具体而言,作为碘化物氧化的光阳极,实现了高达90%的内量子效率(相对于Pt为+0.3 V时)(相比之下,通过超声处理制备的MoS纳米片仅为12%)。进一步结合荧光显微镜和高分辨率扫描透射电子显微镜(STEM),我们表明,我们温和剥离的纳米片的缺陷密度(2.33×10¹⁰ cm⁻²)与通过基于真空的技术制备的单层MoS相当,并且比超声处理的MoS纳米薄片至少低三倍。最后,我们将此方法扩展到其他TMD(WS₂、WSe₂),以证明其对高性能且完全可扩展的范德华异质结器件的通用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验