Department of Physiology and Biophysics, University of Miami, Miami, FL, USA.
Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
J Gen Physiol. 2023 Oct 2;155(10). doi: 10.1085/jgp.202313339. Epub 2023 Aug 1.
The KCNQ1 channel is important for the repolarization phase of the cardiac action potential. Loss of function mutations in KCNQ1 can cause long QT syndrome (LQTS), which can lead to cardiac arrythmia and even sudden cardiac death. We have previously shown that polyunsaturated fatty acids (PUFAs) and PUFA analogs can activate the cardiac KCNQ1 channel, making them potential therapeutics for the treatment of LQTS. PUFAs bind to KCNQ1 at two different binding sites: one at the voltage sensor (Site I) and one at the pore (Site II). PUFA interaction at Site I shifts the voltage dependence of the channel to the left, while interaction at Site II increases maximal conductance. The PUFA analogs, linoleic-glycine and linoleic-tyrosine, are more effective than linoleic acid at Site I, but less effective at Site II. Using both simulations and experiments, we find that the larger head groups of linoleic-glycine and linoleic-tyrosine interact with more residues than the smaller linoleic acid at Site I. We propose that this will stabilize the negatively charged PUFA head group in a position to better interact electrostatically with the positively charges in the voltage sensor. In contrast, the larger head groups of linoleic-glycine and linoleic-tyrosine compared with linoleic acid prevent a close fit of these PUFA analogs in Site II, which is more confined. In addition, we identify several KCNQ1 residues as critical PUFA-analog binding residues, thereby providing molecular models of specific interactions between PUFA analogs and KCNQ1. These interactions will aid in future drug development based on PUFA-KCNQ1 channel interactions.
KCNQ1 通道对于心脏动作电位的复极化阶段很重要。KCNQ1 的功能丧失突变可导致长 QT 综合征(LQTS),这可能导致心律失常甚至心源性猝死。我们之前已经表明,多不饱和脂肪酸(PUFAs)和 PUFAs 类似物可以激活心脏 KCNQ1 通道,使它们成为治疗 LQTS 的潜在治疗方法。PUFAs 在两个不同的结合位点与 KCNQ1 结合:一个在电压传感器(Site I),一个在孔(Site II)。PUFA 在 Site I 的相互作用使通道的电压依赖性向左移动,而在 Site II 的相互作用则增加最大电导。PUFA 类似物亚油酸-甘氨酸和亚油酸-酪氨酸在 Site I 比亚油酸更有效,但在 Site II 效果较差。通过模拟和实验,我们发现亚油酸-甘氨酸和亚油酸-酪氨酸的较大头基与 Site I 上的更多残基相互作用,而较小的亚油酸与 Site I 上的更多残基相互作用。我们提出,这将稳定带负电荷的 PUFA 头基,使其能够更好地与电压传感器中的正电荷静电相互作用。相比之下,亚油酸-甘氨酸和亚油酸-酪氨酸的较大头基与亚油酸相比,阻止这些 PUFAs 类似物在 Site II 中紧密配合,因为 Site II 更受限制。此外,我们确定了几个 KCNQ1 残基作为关键的 PUFAs 类似物结合残基,从而为 PUFAs 类似物与 KCNQ1 之间的特定相互作用提供了分子模型。这些相互作用将有助于基于 PUFAs-KCNQ1 通道相互作用的未来药物开发。