Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7879-7888. doi: 10.1073/pnas.1811623116. Epub 2019 Mar 27.
The current has an established role in cardiac action potential repolarization, and provides a repolarization reserve at times of stress. The underlying channels are formed from tetramers of KCNQ1 along with one to four KCNE1 accessory subunits, but how these components together gate the complex to open the pore is controversial. Currently, either a concerted movement involving all four subunits of the tetramer or allosteric regulation of open probability through voltage-dependent subunit activation is thought to precede opening. Here, by using the E160R mutation in KCNQ1 or the F57W mutation in KCNE1 to prevent or impede, respectively, voltage sensors from moving into activated conformations, we demonstrate that a concerted transition of all four subunits after voltage sensor activation is not required for the opening of channels. Tracking voltage sensor movement, via [2-(trimethylammonium)ethyl]methanethiosulfonate bromide (MTSET) modification and fluorescence recordings, shows that E160R-containing voltage sensors do not translocate upon depolarization. E160R, when expressed in all four KCNQ1 subunits, is nonconducting, but if one, two, or three voltage sensors contain the E160R mutation, whole-cell and single-channel currents are still observed in both the presence and absence of KCNE1, and average conductance is reduced proportional to the number of E160R voltage sensors. The data suggest that KCNQ1 + KCNE1 channels gate like KCNQ1 alone. A model of independent voltage sensors directly coupled to open states can simulate experimental changes in current kinetics, including the nonlinear depolarization of the conductance-voltage (G-V) relationship, and tail current acceleration as the number of nonactivatable E160R subunits is increased.
电流在心脏动作电位复极化中具有既定作用,并在应激时提供复极化储备。基础通道由 KCNQ1 形成四聚体,与一个到四个 KCNE1 辅助亚基组成,但这些组件如何共同门控该复合物以打开孔是有争议的。目前,要么是涉及四聚体的所有四个亚基的协同运动,要么是通过电压依赖性亚基激活对开放概率的变构调节,被认为先于开放。在这里,通过使用 KCNQ1 中的 E160R 突变或 KCNE1 中的 F57W 突变分别防止或阻碍电压传感器进入激活构象,我们证明电压传感器激活后所有四个亚基的协同转变对于通道的开放不是必需的。通过[2-(三甲基铵)乙基]甲硫基磺酸溴化物(MTSET)修饰和荧光记录跟踪电压传感器的运动,表明含 E160R 的电压传感器在去极化时不会移位。E160R 在所有四个 KCNQ1 亚基中表达时是无导电性的,但如果一个、两个或三个电压传感器包含 E160R 突变,则在存在和不存在 KCNE1 的情况下仍然观察到全细胞和单通道电流,并且平均电导与 E160R 电压传感器的数量成比例降低。数据表明 KCNQ1 + KCNE1 通道像 KCNQ1 一样门控。独立电压传感器直接耦合到开放状态的模型可以模拟实验中电流动力学的变化,包括电导-电压(G-V)关系的非线性去极化以及尾电流加速,因为不可激活的 E160R 亚基的数量增加。