Keenan Tiarnan D L, Loewenstein Anat
Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA.
Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
Curr Opin Ophthalmol. 2023 Sep 1;34(5):441-448. doi: 10.1097/ICU.0000000000000981. Epub 2023 Jun 19.
Home monitoring in ophthalmology is appropriate for disease stages requiring frequent monitoring or rapid intervention, for example, neovascular age-related macular degeneration (AMD) and glaucoma, where the balance between frequent hospital attendance versus risk of late detection is a constant challenge. Artificial intelligence approaches are well suited to address some challenges of home monitoring.
Ophthalmic data collected at home have included functional (e.g. perimetry), biometric (e.g. intraocular pressure), and imaging [e.g. optical coherence tomography (OCT)] data. Potential advantages include early detection/intervention, convenience, cost, and visual outcomes. Artificial intelligence can assist with home monitoring workflows by handling large data volumes from frequent testing, compensating for test quality, and extracting useful metrics from complex data. Important use cases include machine learning applied to hyperacuity self-testing for detecting neovascular AMD and deep learning applied to OCT data for quantifying retinal fluid.
Home monitoring of health conditions is useful for chronic diseases requiring rapid intervention or frequent data sampling to decrease risk of irreversible vision loss. Artificial intelligence may facilitate accurate, frequent, large-scale home monitoring, if algorithms are integrated safely into workflows. Clinical trials and economic evaluations are important to demonstrate the value of artificial intelligence-based home monitoring, towards improved visual outcomes.
眼科家庭监测适用于需要频繁监测或快速干预的疾病阶段,例如新生血管性年龄相关性黄斑变性(AMD)和青光眼,在这些疾病中,频繁就诊与晚期发现风险之间的平衡始终是一项挑战。人工智能方法非常适合应对家庭监测的一些挑战。
在家中收集的眼科数据包括功能数据(如视野检查)、生物特征数据(如眼压)和成像数据[如光学相干断层扫描(OCT)]。潜在优势包括早期检测/干预、便利性、成本和视觉效果。人工智能可以通过处理频繁检测产生的大量数据、弥补检测质量以及从复杂数据中提取有用指标来协助家庭监测工作流程。重要的应用案例包括将机器学习应用于超敏锐度自我测试以检测新生血管性AMD,以及将深度学习应用于OCT数据以量化视网膜积液。
对健康状况进行家庭监测对于需要快速干预或频繁数据采样以降低不可逆视力丧失风险的慢性疾病很有用。如果算法能够安全地集成到工作流程中,人工智能可能有助于实现准确、频繁、大规模的家庭监测。临床试验和经济评估对于证明基于人工智能的家庭监测对改善视觉效果的价值很重要。