Suppr超能文献

使用人工智能聊天机器人解读临床视网膜图像。

Interpretation of Clinical Retinal Images Using an Artificial Intelligence Chatbot.

作者信息

Mihalache Andrew, Huang Ryan S, Mikhail David, Popovic Marko M, Shor Reut, Pereira Austin, Kwok Jason, Yan Peng, Wong David T, Kertes Peter J, Kohly Radha P, Muni Rajeev H

机构信息

Temerty School of Medicine, University of Toronto, Toronto, Ontario, Canada.

Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada.

出版信息

Ophthalmol Sci. 2024 May 23;4(6):100556. doi: 10.1016/j.xops.2024.100556. eCollection 2024 Nov-Dec.

Abstract

PURPOSE

To assess the performance of Chat Generative Pre-Trained Transformer-4 in providing accurate diagnoses to retina teaching cases from OCTCases.

DESIGN

Cross-sectional study.

SUBJECTS

Retina teaching cases from OCTCases.

METHODS

We prompted a custom chatbot with 69 retina cases containing multimodal ophthalmic images, asking it to provide the most likely diagnosis. In a sensitivity analysis, we inputted increasing amounts of clinical information pertaining to each case until the chatbot achieved a correct diagnosis. We performed multivariable logistic regressions on Stata v17.0 (StataCorp LLC) to investigate associations between the amount of text-based information inputted per prompt and the odds of the chatbot achieving a correct diagnosis, adjusting for the laterality of cases, number of ophthalmic images inputted, and imaging modalities.

MAIN OUTCOME MEASURES

Our primary outcome was the proportion of cases for which the chatbot was able to provide a correct diagnosis. Our secondary outcome was the chatbot's performance in relation to the amount of text-based information accompanying ophthalmic images.

RESULTS

Across 69 retina cases collectively containing 139 ophthalmic images, the chatbot was able to provide a definitive, correct diagnosis for 35 (50.7%) cases. The chatbot needed variable amounts of clinical information to achieve a correct diagnosis, where the entire patient description as presented by OCTCases was required for a majority of correctly diagnosed cases (23 of 35 cases, 65.7%). Relative to when the chatbot was only prompted with a patient's age and sex, the chatbot achieved a higher odds of a correct diagnosis when prompted with an entire patient description (odds ratio = 10.1, 95% confidence interval = 3.3-30.3, < 0.01). Despite providing an incorrect diagnosis for 34 (49.3%) cases, the chatbot listed the correct diagnosis within its differential diagnosis for 7 (20.6%) of these incorrectly answered cases.

CONCLUSIONS

This custom chatbot was able to accurately diagnose approximately half of the retina cases requiring multimodal input, albeit relying heavily on text-based contextual information that accompanied ophthalmic images. The diagnostic ability of the chatbot in interpretation of multimodal imaging without text-based information is currently limited. The appropriate use of the chatbot in this setting is of utmost importance, given bioethical concerns.

FINANCIAL DISCLOSURES

Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

摘要

目的

评估Chat生成式预训练变换器4(Chat Generative Pre-Trained Transformer-4)对OCTCases中视网膜教学病例进行准确诊断的性能。

设计

横断面研究。

研究对象

OCTCases中的视网膜教学病例。

方法

我们向一个定制聊天机器人输入69例包含多模态眼科图像的视网膜病例,要求其给出最可能的诊断。在敏感性分析中,我们逐步输入与每个病例相关的越来越多的临床信息,直到聊天机器人做出正确诊断。我们在Stata v17.0(StataCorp有限责任公司)上进行多变量逻辑回归,以研究每个提示输入的基于文本的信息量与聊天机器人做出正确诊断的几率之间的关联,并对病例的患侧性、输入的眼科图像数量和成像方式进行调整。

主要观察指标

我们的主要观察指标是聊天机器人能够做出正确诊断的病例比例。次要观察指标是聊天机器人相对于眼科图像所附带的基于文本的信息量的表现。

结果

在总共包含139张眼科图像的69例视网膜病例中,聊天机器人能够对35例(50.7%)病例做出明确、正确的诊断。聊天机器人需要不同数量的临床信息才能做出正确诊断,大多数正确诊断的病例(35例中的23例,65.7%)需要OCTCases提供的完整患者描述。相对于仅向聊天机器人提示患者的年龄和性别时,当向其提示完整的患者描述时,聊天机器人做出正确诊断的几率更高(优势比=10.1,95%置信区间=3.3-30.3,P<0.01)。尽管聊天机器人对34例(49.3%)病例给出了错误诊断,但在这些回答错误的病例中,有7例(20.6%)在其鉴别诊断中列出了正确诊断。

结论

这个定制聊天机器人能够准确诊断大约一半需要多模态输入的视网膜病例,尽管严重依赖眼科图像所附带的基于文本的背景信息。目前,聊天机器人在无基于文本信息的情况下解释多模态成像的诊断能力有限。考虑到生物伦理问题,在这种情况下正确使用聊天机器人至关重要。

财务披露

在本文末尾的脚注和披露中可能会找到专有或商业披露信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验