Suppr超能文献

用于具有昂贵约束的进化多目标优化的多粒度代理建模

Multigranularity Surrogate Modeling for Evolutionary Multiobjective Optimization With Expensive Constraints.

作者信息

Zhang Yajie, Jiang Hao, Tian Ye, Ma Haiping, Zhang Xingyi

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Mar;35(3):2956-2968. doi: 10.1109/TNNLS.2023.3297624. Epub 2024 Feb 29.

Abstract

Multiobjective optimization problems (MOPs) with expensive constraints pose stiff challenges to existing surrogate-assisted evolutionary algorithms (SAEAs) in a very limited computational cost, due to the fact that the number of expensive constraints for an MOP is often large. For existing SAEAs, they always approximate constraint functions in a single granularity, namely, approximating the constraint violation (CV, coarse-grained) or each constraint (fine-grained). However, the landscape of CV is often too complex to be accurately approximated by a surrogate model. Although the modeling of each constraint function may be simpler than that of CV, approximating all the constraint functions independently may result in tremendous cumulative errors and high computational costs. To address this issue, in this article, we develop a multigranularity surrogate modeling framework for evolutionary algorithms (EAs), where the approximation granularity of constraint surrogates is adaptively determined by the position of the population in the fitness landscape. Moreover, a dedicated model management strategy is also developed to reduce the impact resulting from the errors introduced by constraint surrogates and prevent the population from trapping into local optima. To evaluate the performance of the proposed framework, an implementation called K-MGSAEA is proposed, and the experimental results on a large number of test problems show that the proposed framework is superior to seven state-of-the-art competitors.

摘要

具有昂贵约束的多目标优化问题(MOP),由于MOP的昂贵约束数量通常很大,在非常有限的计算成本下给现有的代理辅助进化算法(SAEA)带来了严峻挑战。对于现有的SAEA,它们总是以单一粒度近似约束函数,即近似约束违反(CV,粗粒度)或每个约束(细粒度)。然而,CV的情况通常过于复杂,难以由代理模型准确近似。虽然每个约束函数的建模可能比CV的建模更简单,但独立近似所有约束函数可能会导致巨大的累积误差和高计算成本。为了解决这个问题,在本文中,我们为进化算法(EA)开发了一个多粒度代理建模框架,其中约束代理的近似粒度由种群在适应度景观中的位置自适应确定。此外,还开发了一种专用的模型管理策略,以减少约束代理引入的误差所产生的影响,并防止种群陷入局部最优。为了评估所提出框架的性能,提出了一个名为K-MGSAEA的实现,并且在大量测试问题上的实验结果表明,所提出的框架优于七个最先进的竞争对手。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验