Xia Xin, Zhang Yajie, Zeng Xiangxiang, Zhang Xingyi, Zheng Chunhou, Su Yansen
The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, Jiulong Road, Hefei 230601, China.
The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Jiulong Road, Hefei 230601, China.
Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf335.
Molecular optimization, aiming to identify molecules with improved properties from a huge chemical search space, is a critical step in drug development. This task is challenging due to the need to optimize multiple properties while adhering to stringent drug-like criteria. Recently, numerous effective artificial intelligence methods have been proposed for molecular optimization. However, most of them neglect the constraints in molecular optimization, thereby limiting the development of high-quality molecules that simultaneously satisfy property objectives and constraint compliance. To address this issue, we proposed a deep multi-objective optimization framework, termed CMOMO, for constrained molecular multi-property optimization. The proposed CMOMO divides the optimization process into two stages, which enables it to use a dynamic constraint handling strategy to balance multi-property optimization and constraint satisfaction. Besides, a latent vector fragmentation based evolutionary reproduction strategy is designed to generate promising molecules effectively. Experimental results on two benchmark tasks show that the proposed CMOMO outperforms five state-of-the-art methods to obtain more successfully optimized molecules with multiple desired properties and satisfying drug-like constraints. Moreover, the superiority of CMOMO is verified on two practical tasks, including a potential protein-ligand optimization task of 4LDE protein, which is the structure of $\beta $2-adrenoceptor GPCR receptor, and a potential inhibitor optimization task of glycogen synthase kinase-3$\beta $ target (GSK3$\beta $). Notably, CMOMO demonstrates a two-fold improvement in success rate for the GSK3$\beta $ optimization task, successfully identifying molecules with favorable bioactivity, drug-likeness, synthetic accessibility, and adherence to structural constraints.
分子优化旨在从庞大的化学搜索空间中识别具有改进特性的分子,是药物开发中的关键步骤。由于需要在遵循严格的类药标准的同时优化多种特性,这项任务具有挑战性。最近,已经提出了许多有效的人工智能方法用于分子优化。然而,它们中的大多数都忽略了分子优化中的约束条件,从而限制了同时满足特性目标和约束合规性的高质量分子的开发。为了解决这个问题,我们提出了一个深度多目标优化框架,称为CMOMO,用于受约束的分子多特性优化。所提出的CMOMO将优化过程分为两个阶段,这使其能够使用动态约束处理策略来平衡多特性优化和约束满足。此外,设计了一种基于潜在向量片段化的进化繁殖策略,以有效地生成有前景的分子。在两个基准任务上的实验结果表明,所提出的CMOMO优于五种先进方法,能够获得更多成功优化的具有多种期望特性且满足类药约束的分子。此外,CMOMO在两个实际任务中得到了验证,包括一个针对4LDE蛋白(即β2-肾上腺素能受体GPCR受体的结构)的潜在蛋白质-配体优化任务,以及一个针对糖原合酶激酶-3β靶点(GSK3β)的潜在抑制剂优化任务。值得注意的是,CMOMO在GSK3β优化任务中的成功率提高了两倍,成功识别出具有良好生物活性、类药性、合成可及性并符合结构约束的分子。