Suppr超能文献

基于组织学的深度学习预测食管和胃食管交界处腺癌新辅助化疗的治疗反应。

Histology-Based Prediction of Therapy Response to Neoadjuvant Chemotherapy for Esophageal and Esophagogastric Junction Adenocarcinomas Using Deep Learning.

机构信息

Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen (AöR), Essen, Germany.

Cancer Research Center Cologne Essen (CCCE), West German Cancer Center Essen, University Hospital Essen (AöR), Essen, Germany.

出版信息

JCO Clin Cancer Inform. 2023 Aug;7:e2300038. doi: 10.1200/CCI.23.00038.

Abstract

PURPOSE

Quantifying treatment response to gastroesophageal junction (GEJ) adenocarcinomas is crucial to provide an optimal therapeutic strategy. Routinely taken tissue samples provide an opportunity to enhance existing positron emission tomography-computed tomography (PET/CT)-based therapy response evaluation. Our objective was to investigate if deep learning (DL) algorithms are capable of predicting the therapy response of patients with GEJ adenocarcinoma to neoadjuvant chemotherapy on the basis of histologic tissue samples.

METHODS

This diagnostic study recruited 67 patients with I-III GEJ adenocarcinoma from the multicentric nonrandomized MEMORI trial including three German university hospitals TUM (University Hospital Rechts der Isar, Munich), LMU (Hospital of the Ludwig-Maximilians-University, Munich), and UME (University Hospital Essen, Essen). All patients underwent baseline PET/CT scans and esophageal biopsy before and 14-21 days after treatment initiation. Treatment response was defined as a ≥35% decrease in SUVmax from baseline. Several DL algorithms were developed to predict PET/CT-based responders and nonresponders to neoadjuvant chemotherapy using digitized histopathologic whole slide images (WSIs).

RESULTS

The resulting models were trained on TUM (n = 25 pretherapy, n = 47 on-therapy) patients and evaluated on our internal validation cohort from LMU and UME (n = 17 pretherapy, n = 15 on-therapy). Compared with multiple architectures, the best pretherapy network achieves an area under the receiver operating characteristic curve (AUROC) of 0.81 (95% CI, 0.61 to 1.00), an area under the precision-recall curve (AUPRC) of 0.82 (95% CI, 0.61 to 1.00), a balanced accuracy of 0.78 (95% CI, 0.60 to 0.94), and a Matthews correlation coefficient (MCC) of 0.55 (95% CI, 0.18 to 0.88). The best on-therapy network achieves an AUROC of 0.84 (95% CI, 0.64 to 1.00), an AUPRC of 0.82 (95% CI, 0.56 to 1.00), a balanced accuracy of 0.80 (95% CI, 0.65 to 1.00), and a MCC of 0.71 (95% CI, 0.38 to 1.00).

CONCLUSION

Our results show that DL algorithms can predict treatment response to neoadjuvant chemotherapy using WSI with high accuracy even before therapy initiation, suggesting the presence of predictive morphologic tissue biomarkers.

摘要

目的

量化胃食管结合部(GEJ)腺癌的治疗反应对于提供最佳治疗策略至关重要。常规采集的组织样本为增强基于正电子发射断层扫描-计算机断层扫描(PET/CT)的治疗反应评估提供了机会。我们的目的是研究深度学习(DL)算法是否能够基于组织学样本预测接受新辅助化疗的 GEJ 腺癌患者的治疗反应。

方法

这项诊断研究招募了来自 MEMORI 多中心非随机试验的 67 名 I-III 期 GEJ 腺癌患者,包括德国的三家大学医院 TUM(慕尼黑大学附属医院)、LMU(慕尼黑路德维希-马克西米利安大学医院)和 UME(埃森大学医院)。所有患者均在基线时进行了 PET/CT 扫描和食管活检,然后在治疗开始前 14-21 天进行活检。治疗反应定义为 SUVmax 从基线下降≥35%。使用数字化组织病理学全切片图像(WSI)开发了几种 DL 算法来预测新辅助化疗的 PET/CT 应答者和无应答者。

结果

在我们的内部验证队列(LMU 和 UME)中,对来自 TUM 的模型进行了训练(n=25 例治疗前,n=47 例治疗中),并进行了评估(n=17 例治疗前,n=15 例治疗中)。与多种架构相比,最佳治疗前网络的受试者工作特征曲线下面积(AUROC)为 0.81(95%CI,0.61 至 1.00),精度-召回曲线下面积(AUPRC)为 0.82(95%CI,0.61 至 1.00),平衡准确性为 0.78(95%CI,0.60 至 0.94),马修斯相关系数(MCC)为 0.55(95%CI,0.18 至 0.88)。最佳治疗中网络的 AUROC 为 0.84(95%CI,0.64 至 1.00),AUPRC 为 0.82(95%CI,0.56 至 1.00),平衡准确性为 0.80(95%CI,0.65 至 1.00),MCC 为 0.71(95%CI,0.38 至 1.00)。

结论

我们的研究结果表明,DL 算法甚至可以在治疗前使用 WSI 以较高的准确度预测新辅助化疗的治疗反应,这表明存在预测性的形态组织生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验