Suppr超能文献

转录组学和遗传学方法揭示了哌可啉生物合成途径同时调控番茄果实成熟和品质。

Transcriptomic and genetic approaches reveal that the pipecolate biosynthesis pathway simultaneously regulates tomato fruit ripening and quality.

机构信息

Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China; Department of Horticulture, Zhejiang University, Hangzhou, China.

Department of Horticulture, Zhejiang University, Hangzhou, China.

出版信息

Plant Physiol Biochem. 2023 Aug;201:107920. doi: 10.1016/j.plaphy.2023.107920. Epub 2023 Jul 28.

Abstract

Pipecolic acid (Pip) and N-hydroxypipecolic acid (NHP) have been found to accumulate during the ripening of multiple types of fruits; however, the function and mechanism of pipecolate pathway in fruits remain unclear. Here study was conducted on fruits produced by the model plant tomato, wherein the NHP biosynthesis-related genes, Slald1 and Slfmo1, were mutated. The results showed that the fruits of both the Slald1 and the Slfmo1 mutants exhibited a delayed onset of ripening, decreased fruit size, nutrition and flavor. Exogenous treatment with Pip and NHP promoted fruit ripening and improved fruit quality. Transcriptomic analysis combined with weighted gene co-expression network analysis revealed that the genes involved in the biosynthesis of amino acids, carbon metabolism, photosynthesis, starch and sucrose metabolism, flavonoid biosynthesis, and plant hormone signal transduction were affected by SlFMO1 gene mutation. Transcription factor prediction analysis revealed that the NAC and AP2/ERF-ERF family members are notably involved in the regulation pathway. Overall, our results suggest that the pipecolate biosynthesis pathway is involved in the simultaneous regulation of fruit ripening and quality and indicate that a regulatory mechanism at the transcriptional level exists. However, possible roles of endogenously synthesized Pip and NHP in these processes remain to be determined. The biosynthesis pathway genes SlALD1 and SlFMO1 may be potential breeding targets for promoting fruit ripening and improving fruit quality with concomitant yield increases.

摘要

哌可酸(Pip)和 N-羟基哌可酸(NHP)已被发现在多种水果成熟过程中积累;然而,哌可酸途径在果实中的功能和机制仍不清楚。本研究以模式植物番茄的果实为研究对象,突变了 NHP 生物合成相关基因 Slald1 和 Slfmo1。结果表明,Slald1 和 Slfmo1 突变体的果实成熟时间延迟,果实变小,营养和风味下降。外源性 Pip 和 NHP 处理可促进果实成熟,改善果实品质。转录组分析结合加权基因共表达网络分析表明,氨基酸生物合成、碳代谢、光合作用、淀粉和蔗糖代谢、类黄酮生物合成和植物激素信号转导相关基因受到 SlFMO1 基因突变的影响。转录因子预测分析表明,NAC 和 AP2/ERF-ERF 家族成员显著参与调控途径。总体而言,我们的结果表明,哌可酸生物合成途径参与了果实成熟和品质的同时调控,并表明存在转录水平的调控机制。然而,内源性合成的 Pip 和 NHP 在这些过程中的可能作用仍有待确定。生物合成途径基因 SlALD1 和 SlFMO1 可能是促进果实成熟和提高果实品质同时增加产量的潜在育种目标。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验