Dong Zeyu, Zhao Shaoguan, Xing Yizhang, Su Fan, Xu Fei, Fang Lei, Zhang Zhiyuan, Zhao Qingyun, Gu Fenglin
Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Key Laboratory of Genetic Improvement and Quality Control of Tropical Spice and Beverage Crops, Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China.
Hainan Institute, Zhejiang University, Sanya 572025, China.
Plants (Basel). 2025 Jun 23;14(13):1922. doi: 10.3390/plants14131922.
Vanillin, the principal aromatic compound in vanilla, is primarily derived from mature pods of vanilla ( Andrews). Although the biosynthetic pathway of vanillin has been progressively elucidated, the specific key enzymes and transcription factors (TFs) governing vanillin biosynthesis require further comprehensive investigation via combining transcriptomic and metabolomic analysis. For this study, (higher vanillin producer) and (lower vanillin producer) were selected. Time-series metabolomics analysis revealed 160-220 days after pollination (DAPs) as the critical phase for vanillin biosynthesis. Combined time-series transcriptome analysis revealed 984 upregulated differentially expressed genes (DEGs) in key periods, 2058 genes with temporal expression, and 4326 module genes through weighted gene co-expression network analysis (WGCNA), revealing six major classes of TFs: No Apical Meristem (NAC), Myb, WRKY, FLOWERING PROMOTING FACTOR 1-like (FPFL), DOF, and PLATZ. These TFs display strong regulatory relationships with the expression of key enzymatic genes, including P450s, COMT, and 4CL. The NAC TF family emerged as central regulators in this network, with () and () identified as key hub genes within the vanillin biosynthetic gene co-expression network. The findings of this study provide a theoretical foundation and potential target genes for enhancing vanillin production through genetic and metabolic engineering approaches, offering new opportunities for sustainable development in the vanilla industry and related applications.
香草醛是香草中的主要芳香化合物,主要来源于香草成熟的豆荚(安德鲁斯)。尽管香草醛的生物合成途径已逐步阐明,但通过整合转录组学和代谢组学分析,对调控香草醛生物合成的特定关键酶和转录因子仍需进一步全面研究。在本研究中,选择了(香草醛高产株系)和(香草醛低产株系)。时间序列代谢组学分析表明,授粉后160 - 220天是香草醛生物合成的关键时期。结合时间序列转录组分析,通过加权基因共表达网络分析(WGCNA),在关键时期发现984个上调的差异表达基因(DEG)、2058个具有时间表达模式的基因以及4326个模块基因,揭示了六大类转录因子:无顶端分生组织(NAC)、Myb、WRKY、促花因子1样(FPFL)、DOF和PLATZ。这些转录因子与关键酶基因(包括P450s、咖啡酸-O-甲基转移酶(COMT)和4-香豆酸辅酶A连接酶(4CL))的表达显示出强烈的调控关系。NAC转录因子家族在该网络中成为核心调控因子,其中(基因1)和(基因2)被确定为香草醛生物合成基因共表达网络中的关键枢纽基因。本研究结果为通过遗传和代谢工程方法提高香草醛产量提供了理论基础和潜在的靶基因,为香草产业及相关应用的可持续发展提供了新机遇。