Wang Tao, Pan Runtong, Martins Murillo L, Cui Jinlei, Huang Zhennan, Thapaliya Bishnu P, Do-Thanh Chi-Linh, Zhou Musen, Fan Juntian, Yang Zhenzhen, Chi Miaofang, Kobayashi Takeshi, Wu Jianzhong, Mamontov Eugene, Dai Sheng
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA.
Nat Commun. 2023 Aug 1;14(1):4607. doi: 10.1038/s41467-023-40282-1.
Porous carbons are the active materials of choice for supercapacitor applications because of their power capability, long-term cycle stability, and wide operating temperatures. However, the development of carbon active materials with improved physicochemical and electrochemical properties is generally carried out via time-consuming and cost-ineffective experimental processes. In this regard, machine-learning technology provides a data-driven approach to examine previously reported research works to find the critical features for developing ideal carbon materials for supercapacitors. Here, we report the design of a machine-learning-derived activation strategy that uses sodium amide and cross-linked polymer precursors to synthesize highly porous carbons (i.e., with specific surface areas > 4000 m/g). Tuning the pore size and oxygen content of the carbonaceous materials, we report a highly porous carbon-base electrode with 0.7 mg/cm of electrode mass loading that exhibits a high specific capacitance of 610 F/g in 1 M HSO. This result approaches the specific capacitance of a porous carbon electrode predicted by the machine learning approach. We also investigate the charge storage mechanism and electrolyte transport properties via step potential electrochemical spectroscopy and quasielastic neutron scattering measurements.
多孔碳因其功率性能、长期循环稳定性和较宽的工作温度范围,是超级电容器应用中首选的活性材料。然而,具有改进的物理化学和电化学性能的碳活性材料的开发通常通过耗时且成本低效的实验过程来进行。在这方面,机器学习技术提供了一种数据驱动的方法,用于审视先前报道的研究工作,以找到开发用于超级电容器的理想碳材料的关键特征。在此,我们报告了一种基于机器学习的活化策略的设计,该策略使用氨基钠和交联聚合物前体来合成高度多孔的碳(即比表面积>4000 m²/g)。通过调整碳质材料的孔径和氧含量,我们报道了一种电极质量负载为0.7 mg/cm²的高度多孔碳基电极,其在1 M H₂SO₄中表现出610 F/g的高比电容。这一结果接近机器学习方法预测的多孔碳电极的比电容。我们还通过阶跃电位电化学光谱和准弹性中子散射测量研究了电荷存储机制和电解质传输特性。