Suppr超能文献

展示了合成学习在脊柱外科中的成功应用,该方法用于训练具有更高患者隐私保护的多中心模型。

Demonstrating the successful application of synthetic learning in spine surgery for training multi-center models with increased patient privacy.

机构信息

Neurosurgery Artificial Intelligence Lab, Stanford University School of Medicine, Stanford, CA, USA.

Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.

出版信息

Sci Rep. 2023 Aug 1;13(1):12481. doi: 10.1038/s41598-023-39458-y.

Abstract

From real-time tumor classification to operative outcome prediction, applications of machine learning to neurosurgery are powerful. However, the translation of many of these applications are restricted by the lack of "big data" in neurosurgery. Important restrictions in patient privacy and sharing of imaging data reduce the diversity of the datasets used to train resulting models and therefore limit generalizability. Synthetic learning is a recent development in machine learning that generates synthetic data from real data and uses the synthetic data to train downstream models while preserving patient privacy. Such an approach has yet to be successfully demonstrated in the spine surgery domain. Spine radiographs were collected from the VinDR-SpineXR dataset, with 1470 labeled as abnormal and 2303 labeled as normal. A conditional generative adversarial network (GAN) was trained on the radiographs to generate a spine radiograph and normal/abnormal label. A modified conditional GAN (SpineGAN) was trained on the same task. A convolutional neural network (CNN) was trained using the real data to label abnormal radiographs. A CNN was trained to label abnormal radiographs using synthetic images from the GAN and in a separate experiment from SpineGAN. Using the real radiographs, an AUC of 0.856 was achieved in abnormality classification. Training on synthetic data generated by the standard GAN (AUC of 0.814) and synthetic data generated by our SpineGAN (AUC of 0.830) resulted in similar classifier performance. SpineGAN generated images with higher FID and lower precision scores, but with higher recall and increased performance when used for synthetic learning. The successful application of synthetic learning was demonstrated in the spine surgery domain for the classification of spine radiographs as abnormal or normal. A modified domain-relevant GAN is introduced for the generation of spine images, evidencing the importance of domain-relevant generation techniques in synthetic learning. Synthetic learning can allow neurosurgery to use larger and more diverse patient imaging sets to train more generalizable algorithms with greater patient privacy.

摘要

从实时肿瘤分类到手术结果预测,机器学习在神经外科中的应用非常强大。然而,这些应用的许多翻译都受到神经外科中缺乏“大数据”的限制。患者隐私和成像数据共享的重要限制减少了用于训练的数据集的多样性,从而限制了泛化能力。合成学习是机器学习中的一项新技术,它可以从真实数据中生成合成数据,并使用合成数据来训练下游模型,同时保护患者隐私。这种方法在脊柱手术领域尚未得到成功验证。从 VinDR-SpineXR 数据集收集脊柱 X 光片,其中 1470 张标记为异常,2303 张标记为正常。在 X 光片上训练条件生成对抗网络(GAN)以生成脊柱 X 光片和正常/异常标签。在相同的任务上训练修改后的条件 GAN(SpineGAN)。使用真实数据训练卷积神经网络(CNN)来标记异常 X 光片。使用来自 GAN 的合成图像和 SpineGAN 的单独实验来训练 CNN 来标记异常 X 光片。使用真实 X 光片,在异常分类中实现了 0.856 的 AUC。使用标准 GAN 生成的合成数据(AUC 为 0.814)和 SpineGAN 生成的合成数据(AUC 为 0.830)进行训练导致分类器性能相似。SpineGAN 生成的图像具有更高的 FID 和更低的精度分数,但具有更高的召回率和更高的性能,当用于合成学习时。成功地在脊柱外科领域应用了合成学习,用于分类脊柱 X 光片是异常还是正常。引入了一种经过修改的与领域相关的 GAN 来生成脊柱图像,证明了在合成学习中使用与领域相关的生成技术的重要性。合成学习可以使神经外科使用更大、更多样化的患者成像集来训练更具泛化能力且更注重患者隐私的算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fad/10393976/77c20040dc8b/41598_2023_39458_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验