Suppr超能文献

通过多层异质结工程和电源管理系统实现的基于高性能柔性氧化石墨烯的湿度驱动纳米发电机

High-Performance Flexible Graphene Oxide-Based Moisture-Enabled Nanogenerator via Multilayer Heterojunction Engineering and Power Management System.

作者信息

Chen Fandi, Zhang Shuo, Guan Peiyuan, Xu Yeqing, Wan Tao, Lin Chun-Ho, Li Mengyao, Wang Caiyun, Chu Dewei

机构信息

School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia.

Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollogong, 2500, Australia.

出版信息

Small. 2024 Sep;20(39):e2304572. doi: 10.1002/smll.202304572. Epub 2023 Aug 2.

Abstract

Recently, there has been a surge of interest in nanogenerators within the scientific community because their immense potential for extracting energy from the surrounding environment. A promising approach involves utilizing ambient moisture as an energy source for portable devices. In this study, moisture-enabled nanogenerators (MENGs) are devised by integrating heterojunctions of graphene oxide (GO) and reduced graphene oxide (rGO). Benefiting from the unique structure, a larger ion concentration gradient is achieved as well as a lower resistance, which leads to enhanced electricity generation. The resulting MENG generates a desirable open-circuit voltage of 0.76 V and a short-circuit current density of 73 µA cm with a maximum power density of 15.8 µW cm. Notably, the designed device exhibits a high voltage retention of more than 90% after 3000 bending cycles, suggesting a high potential for flexible applications. Moreover, a large-scale integrated MENG array is developed by incorporating flexible printed circuit technology and connecting it to a power management system. This integrated system can provide ample energy to operate an electronic ink display and drive a heart rate sensor for health monitoring. The outcomes of this research present a novel framework for advancing next-generation self-powered flexible devices, thereby demonstrating significant promise for future wearable electronics.

摘要

最近,科学界对纳米发电机的兴趣激增,因为它们在从周围环境中提取能量方面具有巨大潜力。一种很有前景的方法是利用环境湿度作为便携式设备的能源。在这项研究中,通过整合氧化石墨烯(GO)和还原氧化石墨烯(rGO)的异质结来设计湿度驱动纳米发电机(MENG)。得益于独特的结构,实现了更大的离子浓度梯度以及更低的电阻,从而提高了发电效率。由此产生的MENG产生了理想的0.76 V开路电压和73 µA cm的短路电流密度,最大功率密度为15.8 µW cm。值得注意的是,所设计的器件在3000次弯曲循环后表现出超过90%的高电压保持率,这表明其在柔性应用方面具有很高的潜力。此外,通过结合柔性印刷电路技术并将其连接到电源管理系统,开发了一种大规模集成的MENG阵列。该集成系统能够提供充足的能量来操作电子墨水显示器并驱动心率传感器进行健康监测。这项研究的成果为推进下一代自供电柔性设备提供了一个新的框架,从而为未来的可穿戴电子产品展示了巨大的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验