Suppr超能文献

用于下一代可穿戴电子产品的基于弹性离子水凝胶的柔性湿度发电机。

Elastomeric Ionic Hydrogel-Based Flexible Moisture-Electric Generator for Next-Generation Wearable Electronics.

作者信息

Guchait Aparna, Pramanik Subhamay, Goswami Dipak Kumar, Chattopadhyay Santanu, Mondal Titash

机构信息

Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.

School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.

出版信息

ACS Appl Mater Interfaces. 2024 Sep 4;16(35):46844-46857. doi: 10.1021/acsami.4c11907. Epub 2024 Aug 20.

Abstract

Rapid consumption of traditional energy resources creates utmost research interest in developing self-sufficient electrical devices to progress next-generation electronics to a level up. To address the global energy crisis, moisture-electric generators (MEGs) are proving to be an emerging technology in this field, capable of powering wearable electronics by harvesting energy from abundantly available ambient moisture without any requirement for external/additional energy. Recent advances in MEGs generally utilize an inorganic, metal, or petroleum-based polymeric material as an active material, which may produce sufficient current but lacks the flexibility and stretchability required for wearable electronics. Herein, we prepared an elastomer-based ionic hydrogel as an active material, and an MEG was fabricated by placing the ionic hydrogel on a PET sheet with two copper tapes on both sides of the hydrogel. The preparation of the hydrogel was thoroughly optimized and characterized in terms of spectroscopic analysis, swelling, water retention, and mechanical and rheological studies. The highly stretchable (350%) fabricated MEG is capable of producing a short-circuit current () of 16.1 μA/cm, an open-circuit voltage () of 0.24 V, and a power density of 3.86 μW/cm. The synergistic effect of the ion concentration gradient and the redox reaction on electrodes can be considered MEG's working principle. Apart from the current generation, this device is also used as a self-powered electronic sensor to monitor different physical activities by measuring breathing patterns. This prepared device is also capable of sensing the proximity of a hand. Therefore, our low-cost, easily fabricable, sustainable MEG device can be a potential aspirant for next-generation self-powered wearable electronics in healthcare applications.

摘要

传统能源的快速消耗引发了人们对开发自给自足电子设备的极大研究兴趣,以推动下一代电子技术迈向更高水平。为应对全球能源危机,湿气发电机(MEGs)正成为该领域的一项新兴技术,它能够通过从丰富的环境湿气中获取能量来为可穿戴电子产品供电,而无需任何外部/额外能源。MEGs的最新进展通常采用无机、金属或石油基聚合物材料作为活性材料,这种材料可能会产生足够的电流,但缺乏可穿戴电子产品所需的柔韧性和拉伸性。在此,我们制备了一种基于弹性体的离子水凝胶作为活性材料,并通过将离子水凝胶放置在PET片上,在水凝胶两侧贴上两条铜带制成了一个MEG。对水凝胶的制备进行了全面优化,并从光谱分析、溶胀、保水以及力学和流变学研究等方面进行了表征。制备的高度可拉伸(350%)的MEG能够产生16.1μA/cm的短路电流()、0.24V的开路电压()和3.86μW/cm的功率密度。离子浓度梯度和电极上的氧化还原反应的协同作用可被视为MEG的工作原理。除了发电之外,该设备还用作自供电电子传感器,通过测量呼吸模式来监测不同的身体活动。这种制备的设备还能够感知手的接近程度。因此,我们低成本、易于制造、可持续的MEG设备可能成为医疗保健应用中下一代自供电可穿戴电子产品的潜在候选者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验