Suppr超能文献

一种用于大学生群体中暴饮模式分类的新统计模型。

A new statistical model for binge drinking pattern classification in college-student populations.

作者信息

André Judith, Diouf Momar, Martinetti Margaret P, Ortelli Olivia, Gierski Fabien, Fürst Frederic, Pierrefiche Olivier, Naassila Mickael

机构信息

INSERM UMR 1247, Groupe de Recherche sur l'alcool et les Pharmacodépendances, GRAP, Université Picardie Jules Verne, Amiens, France.

Biostatistics Unit, Clinical Research Department, Amiens-Picardie University Hospital, Amiens, France.

出版信息

Front Psychol. 2023 Jul 17;14:1134118. doi: 10.3389/fpsyg.2023.1134118. eCollection 2023.

Abstract

BACKGROUND

Binge drinking (BD) among students is a frequent alcohol consumption pattern that produces adverse consequences. A widely discussed difficulty in the scientific community is defining and characterizing BD patterns. This study aimed to find homogenous drinking groups and then provide a new tool, based on a model that includes several key factors of BD, to assess the severity of BD regardless of the individual's gender.

METHODS

Using the learning sample (N1 = 1,271), a -means clustering algorithm and a partial proportional odds model (PPOM) were used to isolate drinking and behavioral key factors, create homogenous groups of drinkers, and estimate the probability of belonging to these groups. Robustness of our findings were evaluated with Two validations samples (N2 = 2,310, N3 = 120) of French university students (aged 18-25 years) were anonymously investigated via demographic and alcohol consumption questionnaires (AUDIT, AUQ, Alcohol Purchase Task for behavioral economic indices).

RESULTS

The -means revealed four homogeneous groups, based on drinking profiles: low-risk, hazardous, binge, and high-intensity BD. The PPOM generated the probability of each participant, self-identified as either male or female, to belong to one of these groups. Our results were confirmed in two validation samples, and we observed differences between the 4 drinking groups in terms of consumption consequences and behavioral economic demand indices.

CONCLUSION

Our model reveals a progressive severity in the drinking pattern and its consequences and may better characterize binge drinking among university student samples. This model provides a new tool for assessing the severity of binge drinking and illustrates that frequency of drinking behavior and particularly drunkenness are central features of a binge drinking model.

摘要

背景

学生中的暴饮(BD)是一种常见的酒精消费模式,会产生不良后果。科学界广泛讨论的一个难题是定义和描述暴饮模式。本研究旨在找出同质的饮酒群体,然后基于一个包含暴饮几个关键因素的模型,提供一种新工具,以评估暴饮的严重程度,而不考虑个体的性别。

方法

使用学习样本(N1 = 1271),采用k均值聚类算法和部分比例优势模型(PPOM)来分离饮酒和行为关键因素,创建同质的饮酒者群体,并估计属于这些群体的概率。通过两份验证样本(N2 = 2310,N3 = 120)对法国大学生(年龄在18 - 25岁之间)进行匿名调查,以评估我们研究结果的稳健性,调查通过人口统计学和酒精消费问卷(AUDIT、AUQ、用于行为经济指标的酒精购买任务)进行。

结果

基于饮酒特征,k均值聚类揭示了四个同质群体:低风险、危险、暴饮和高强度暴饮。PPOM生成了每个自我认定为男性或女性的参与者属于这些群体之一的概率。我们的结果在两份验证样本中得到了证实,并且我们观察到这4个饮酒群体在消费后果和行为经济需求指标方面存在差异。

结论

我们的模型揭示了饮酒模式及其后果的渐进性严重程度,并且可能更好地描述大学生样本中的暴饮情况。该模型为评估暴饮的严重程度提供了一种新工具,并表明饮酒行为的频率,尤其是醉酒,是暴饮模型的核心特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78f6/10390312/e44d92c560c3/fpsyg-14-1134118-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验