Suppr超能文献

基于生物信息学和二代测序数据分析的胰腺导管腺癌分子标志物鉴定及相互作用分析

Identification and Interaction Analysis of Molecular Markers in Pancreatic Ductal Adenocarcinoma by Bioinformatics and Next-Generation Sequencing Data Analysis.

作者信息

Giriyappagoudar Muttanagouda, Vastrad Basavaraj, Horakeri Rajeshwari, Vastrad Chanabasayya

机构信息

Department of Radiation Oncology, Karnataka Institute of Medical Sciences (KIMS), Hubballi, India.

Department of Pharmaceutical Chemistry, K.L.E. Society's College of Pharmacy, Gadag, India.

出版信息

Bioinform Biol Insights. 2023 Jul 25;17:11779322231186719. doi: 10.1177/11779322231186719. eCollection 2023.

Abstract

BACKGROUND

Pancreatic ductal adenocarcinoma (PDAC) is one of the most common cancers worldwide. Intense efforts have been made to elucidate the molecular pathogenesis, but the molecular mechanisms of PDAC are still not well understood. The purpose of this study is to further explore the molecular mechanism of PDAC through integrated bioinformatics analysis.

METHODS

To identify the candidate genes in the carcinogenesis and progression of PDAC, next-generation sequencing (NGS) data set GSE133684 was downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified, and Gene Ontology (GO) and pathway enrichment analyses were performed. The protein-protein interaction network (PPI) was constructed and the module analysis was performed using Integrated Interactions Database (IID) interactome database and Cytoscape. Subsequently, miRNA-DEG regulatory network and TF-DEG regulatory network were constructed using miRNet database, NetworkAnalyst database, and Cytoscape software. The expression levels of hub genes were validated based on Kaplan-Meier analysis, expression analysis, stage analysis, mutation analysis, protein expression analysis, immune infiltration analysis, and receiver operating characteristic (ROC) curve analysis.

RESULTS

A total of 463 DEGs were identified, consisting of 232 upregulated genes and 233 downregulated genes. The enriched GO terms and pathways of the DEGs include vesicle organization, secretory vesicle, protein dimerization activity, lymphocyte activation, cell surface, transferase activity, transferring phosphorus-containing groups, hemostasis, and adaptive immune system. Four hub genes (namely, cathepsin B [CCNB1], four-and-a-half LIM domains 2 (FHL2), major histocompatibility complex, class II, DP alpha 1 (HLA-DPA1) and tubulin beta 1 class VI (TUBB1)) were obtained via taking interaction of different analysis results.

CONCLUSIONS

On the whole, the findings of this investigation enhance our understanding of the potential molecular mechanisms of PDAC and provide potential targets for further investigation.

摘要

背景

胰腺导管腺癌(PDAC)是全球最常见的癌症之一。人们已付出巨大努力来阐明其分子发病机制,但PDAC的分子机制仍未完全明确。本研究旨在通过综合生物信息学分析进一步探索PDAC的分子机制。

方法

为了鉴定PDAC发生发展过程中的候选基因,从基因表达综合数据库(GEO)下载了二代测序(NGS)数据集GSE133684。鉴定差异表达基因(DEG),并进行基因本体论(GO)和通路富集分析。使用综合相互作用数据库(IID)相互作用组数据库和Cytoscape构建蛋白质-蛋白质相互作用网络(PPI)并进行模块分析。随后,使用miRNet数据库、NetworkAnalyst数据库和Cytoscape软件构建miRNA-DEG调控网络和TF-DEG调控网络。基于Kaplan-Meier分析、表达分析、分期分析、突变分析、蛋白质表达分析、免疫浸润分析和受试者工作特征(ROC)曲线分析验证枢纽基因的表达水平。

结果

共鉴定出463个DEG,其中包括232个上调基因和233个下调基因。DEG富集的GO术语和通路包括囊泡组织、分泌囊泡、蛋白质二聚化活性、淋巴细胞活化、细胞表面、转移酶活性、转移含磷基团、止血和适应性免疫系统。通过整合不同分析结果的相互作用,获得了四个枢纽基因(即组织蛋白酶B [CCNB1]、四半LIM结构域2(FHL2)、主要组织相容性复合体II类DPα1(HLA-DPA1)和微管蛋白β1 VI类(TUBB1))。

结论

总体而言,本研究结果加深了我们对PDAC潜在分子机制的理解,并为进一步研究提供了潜在靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8425/10387711/34db6cd9a6a3/10.1177_11779322231186719-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验