Maleki Mohsen, Bidram Hamid, Wraith Darren
Department of Statistics, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan, Iran.
School of Public Health & Social Work and Centre for Data Science, Queensland University of Technology (QUT), Brisbane, Australia.
J Appl Stat. 2022 Jan 1;50(11-12):2648-2662. doi: 10.1080/02664763.2021.2019688. eCollection 2023.
In this paper, we develop a mixture of autoregressive (MoAR) process model with time varying and freely indexed covariates under the flexible class of two-piece distributions using the scale mixtures of normal (TP-SMN) family. This novel family of time series (TP-SMN-MoAR) models was used to examine flexible and robust clustering of reported cases of Covid-19 across 313 counties in the U.S. The TP-SMN distributions allow for symmetrical/ asymmetrical distributions as well as heavy-tailed distributions providing for flexibility to handle outliers and complex data. Developing a suitable hierarchical representation of the TP-SMN family enabled the construction of a pseudo-likelihood function to derive the maximum pseudo-likelihood estimates via an EM-type algorithm.
在本文中,我们使用正态分布的尺度混合(TP-SMN)族,在灵活的两段分布类下,开发了一种具有时变和自由索引协变量的自回归混合(MoAR)过程模型。这个新颖的时间序列模型族(TP-SMN-MoAR)用于检验美国313个县上报的新冠肺炎病例的灵活且稳健的聚类情况。TP-SMN分布允许对称/不对称分布以及重尾分布,为处理异常值和复杂数据提供了灵活性。开发TP-SMN族的合适分层表示,使得能够构建一个伪似然函数,通过一种期望最大化(EM)型算法来推导最大伪似然估计值。