Suppr超能文献

使用具有时变和自由索引协变量的非对称时间序列模型混合方法对美国各县的新冠肺炎病例进行稳健聚类。

Robust clustering of COVID-19 cases across U.S. counties using mixtures of asymmetric time series models with time varying and freely indexed covariates.

作者信息

Maleki Mohsen, Bidram Hamid, Wraith Darren

机构信息

Department of Statistics, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan, Iran.

School of Public Health & Social Work and Centre for Data Science, Queensland University of Technology (QUT), Brisbane, Australia.

出版信息

J Appl Stat. 2022 Jan 1;50(11-12):2648-2662. doi: 10.1080/02664763.2021.2019688. eCollection 2023.

Abstract

In this paper, we develop a mixture of autoregressive (MoAR) process model with time varying and freely indexed covariates under the flexible class of two-piece distributions using the scale mixtures of normal (TP-SMN) family. This novel family of time series (TP-SMN-MoAR) models was used to examine flexible and robust clustering of reported cases of Covid-19 across 313 counties in the U.S. The TP-SMN distributions allow for symmetrical/ asymmetrical distributions as well as heavy-tailed distributions providing for flexibility to handle outliers and complex data. Developing a suitable hierarchical representation of the TP-SMN family enabled the construction of a pseudo-likelihood function to derive the maximum pseudo-likelihood estimates via an EM-type algorithm.

摘要

在本文中,我们使用正态分布的尺度混合(TP-SMN)族,在灵活的两段分布类下,开发了一种具有时变和自由索引协变量的自回归混合(MoAR)过程模型。这个新颖的时间序列模型族(TP-SMN-MoAR)用于检验美国313个县上报的新冠肺炎病例的灵活且稳健的聚类情况。TP-SMN分布允许对称/不对称分布以及重尾分布,为处理异常值和复杂数据提供了灵活性。开发TP-SMN族的合适分层表示,使得能够构建一个伪似然函数,通过一种期望最大化(EM)型算法来推导最大伪似然估计值。

相似文献

7
A Flexible EM-Like Clustering Algorithm for Noisy Data.一种用于噪声数据的灵活的类期望最大化聚类算法。
IEEE Trans Pattern Anal Mach Intell. 2024 May;46(5):2709-2721. doi: 10.1109/TPAMI.2023.3337195. Epub 2024 Apr 3.

引用本文的文献

1
Editorial to the special issue: statistical perspectives on analytics for COVID-19 data.特刊社论:关于COVID-19数据分析的统计学视角
J Appl Stat. 2023 Jul 28;50(11-12):2287-2293. doi: 10.1080/02664763.2023.2228597. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验