van der Tol Joost J B, Vantomme Ghislaine, Meijer E W
Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands.
School of Chemistry and RNA Institute The University of New South Wales, Sydney, New South Wales 2052, Australia.
J Am Chem Soc. 2023 Aug 16;145(32):17987-17994. doi: 10.1021/jacs.3c05547. Epub 2023 Aug 2.
Supramolecular building blocks assembling into helical aggregates are ubiquitous in the current literature, yet the role of solvents in these supramolecular polymerizations often remains elusive. Here, we present a systematic study that quantifies solvent-supramolecular polymer compatibility using the Hansen solubility parameters (δ, δ, and δ). We first studied the solubility space of the supramolecular building block triazine-1,3,5-tribenzenecarboxamide . Due to its amphiphilic nature, a dual-sphere model based on 58 solvents was applied describing the solubility space of the monomeric state (green sphere) and supramolecular polymer state (blue sphere). To our surprise, further in-depth spectroscopic and morphological studies unveiled a distinct solubility region in-between the two spheres giving rise to the formation of higher-order aggregated structures. This phenomenon occurs due to subtle differences in polarity between the solvent and the side chains and highlights the solvent-induced pathway complexity of supramolecular polymerizations. Subsequent variations in concentration and temperature led to the expansion and contraction of both solubility spheres providing two additional features to tune the monomer and supramolecular polymer solubility. Finally, we applied our dual-sphere model on structurally disparate monomers, such as Zn-porphyrin () and triphenylamine (), demonstrating the generality of the model and the importance of the supramolecular monomer design in connection with the solvent used. This work unravels the solvent-induced pathway complexity of discotic supramolecular building blocks using a parametrized approach in which interactions between the solvent and solute play a crucial role.
超分子构建单元组装成螺旋聚集体在当前文献中很常见,但溶剂在这些超分子聚合反应中的作用往往仍不清楚。在此,我们进行了一项系统研究,使用汉森溶解度参数(δd、δp和δh)来量化溶剂与超分子聚合物的相容性。我们首先研究了超分子构建单元三嗪-1,3,5-三苯甲酸酰胺的溶解度空间。由于其两亲性,应用了基于58种溶剂的双球模型来描述单体状态(绿色球体)和超分子聚合物状态(蓝色球体)的溶解度空间。令我们惊讶的是,进一步深入的光谱和形态学研究揭示了两个球体之间有一个独特的溶解度区域,导致形成了高阶聚集结构。这种现象是由于溶剂和侧链之间极性的细微差异而发生的,并突出了超分子聚合反应中溶剂诱导的途径复杂性。随后浓度和温度的变化导致两个溶解度球体的膨胀和收缩,提供了另外两个调节单体和超分子聚合物溶解度的特性。最后,我们将双球模型应用于结构不同的单体,如锌卟啉()和三苯胺(),证明了该模型的通用性以及超分子单体设计与所用溶剂相关的重要性。这项工作使用一种参数化方法揭示了盘状超分子构建单元的溶剂诱导途径复杂性,其中溶剂和溶质之间的相互作用起着关键作用。