Rafique Muhammad Ghufran, Wu Yihao, Shi Yutong, Laurent Quentin, Elmanzalawy Abdelrahman, Saab Christopher, Shi Yu, Perepichka Dmytro F, Li Jianing, Sleiman Hanadi F
Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 0B8, Canada.
Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47906, USA.
Angew Chem Int Ed Engl. 2025 Aug 11;64(33):e202501441. doi: 10.1002/anie.202501441. Epub 2025 Jul 4.
The formation of higher-order structures in natural biopolymers, such as polypeptides and nucleic acids, is governed by sequence specificity and monomer chemistry. Although nucleic acids can assemble into programmable nanostructures through base-pairing interactions, their chemical diversity is limited to four nucleobases. DNA amphiphiles overcome this limitation by introducing orthogonal interactions through non-nucleosidic modifications. These amphiphiles self-assemble into diverse morphologies, such as spheres, fibers, or sheets, with closely packed, parallel DNA strands on their exterior. This unusual arrangement can give rise to emergent properties absent in simple DNA strands. Here, we show that the precise sequence of single-stranded DNA, independent of double helix base-pairing, can be used to program the self-assembled morphology of DNA amphiphiles. Remarkably, small sequence variations can drive the formation of nonequilibrium DNA nanotoroids, rather than conventional morphologies. The DNA nanotoroids were formed as on-pathway structures via a competitive mechanism, only when a toroid-selective DNA sequence was used. They could be stabilized noncovalently by a small molecule cross-linker or coassembly with a secondary DNA amphiphile. Molecular dynamics simulations demonstrated the dependence of toroid formation on the structure of the end π-stacking unit. This work introduces a new class of DNA-based nanotoroid materials with assembly properties controlled by unique sequences, akin to proteins, for applications in cell delivery, nanofiltration, nanoreactors, and materials templation.
天然生物聚合物(如多肽和核酸)中高阶结构的形成受序列特异性和单体化学性质的支配。尽管核酸可以通过碱基配对相互作用组装成可编程的纳米结构,但其化学多样性仅限于四种核碱基。DNA两亲分子通过非核苷修饰引入正交相互作用来克服这一限制。这些两亲分子自组装成各种形态,如球体、纤维或薄片,其外部有紧密堆积的平行DNA链。这种不同寻常的排列可以产生简单DNA链中不存在的新兴特性。在这里,我们表明,单链DNA的精确序列,独立于双螺旋碱基配对,可用于编程DNA两亲分子的自组装形态。值得注意的是,小的序列变化可以驱动非平衡DNA纳米环的形成,而不是传统形态。只有当使用环选择性DNA序列时,DNA纳米环才通过竞争机制作为途径上的结构形成。它们可以通过小分子交联剂或与二级DNA两亲分子共组装而被非共价稳定。分子动力学模拟证明了纳米环形成对末端π-堆积单元结构的依赖性。这项工作引入了一类新型的基于DNA的纳米环材料,其组装特性由独特序列控制,类似于蛋白质,可用于细胞递送、纳米过滤、纳米反应器和材料模板等应用。