Suppr超能文献

基于无线物联网的医疗保健系统长尾数据的带评分辅助的联邦学习。

Scoring Aided Federated Learning on Long-Tailed Data for Wireless IoMT Based Healthcare System.

出版信息

IEEE J Biomed Health Inform. 2024 Jun;28(6):3341-3348. doi: 10.1109/JBHI.2023.3300173. Epub 2024 Jun 6.

Abstract

In this article, we propose a novel federated learning (FL) framework for wireless Internet of Medical Things (IoMT) based healthcare systems, where multiple mobile clients and one edge server (ES) collaboratively train a shared model on long-tail data through wireless channels. However, the presence of long-tailed data in this system may introduce a biased global model which fails to handle the tail classes. Additionally, the occurrence of severe fading in wireless channels may prevent mobile clients from successfully uploading local models to the ES, thereby excluding them from participating in the model aggregation. These situations adversely affect the performance of FL. To overcome these challenges, we propose a novel scoring aided FL framework that uses a scoring-based sampling strategy to select mobile clients with more tailed data and better transmission conditions to upload their local models. Specifically, we leverage the logits to explore the data distribution among local clients and propose a logits based scoring client selection method to alleviate the impact of long-tailed data. Moreover, we address the impact of severe fading by incorporating the channel state information (CSI) and data rate of clients into the logits based scoring and proposing a novel logits and model upload rate based client selection method. Experimental results demonstrate the effectiveness of our proposed framework. In particular, compared to the conventional FedAvg, the proposed framework can achieve accuracy gains ranging from 4.44% to 28.36% on the CIFAR-10-LT dataset with an imbalance factor (IF) of 50.

摘要

在本文中,我们提出了一种新的联邦学习(FL)框架,用于基于无线医疗物联网(IoMT)的医疗保健系统,其中多个移动客户端和一个边缘服务器(ES)通过无线信道在长尾数据上协同训练一个共享模型。然而,在这个系统中,长尾数据的存在可能会引入一个有偏差的全局模型,从而无法处理尾部类别。此外,无线信道中严重衰落的发生可能会阻止移动客户端成功地将本地模型上传到 ES,从而使它们无法参与模型聚合。这些情况对 FL 的性能产生了不利影响。为了克服这些挑战,我们提出了一种新的评分辅助 FL 框架,该框架使用基于评分的抽样策略选择具有更多长尾数据和更好传输条件的移动客户端来上传其本地模型。具体来说,我们利用对数来探索本地客户端之间的数据分布,并提出了一种基于对数的评分客户端选择方法,以减轻长尾数据的影响。此外,我们通过将客户端的信道状态信息(CSI)和数据速率纳入基于对数的评分中,并提出了一种新的基于对数和模型上传速率的客户端选择方法,解决了严重衰落的影响。实验结果证明了我们提出的框架的有效性。特别是与传统的 FedAvg 相比,我们提出的框架在不平衡因子(IF)为 50 时,在 CIFAR-10-LT 数据集上可以获得 4.44%至 28.36%的准确率增益。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验