Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada.
Sensors (Basel). 2024 Aug 6;24(16):5095. doi: 10.3390/s24165095.
The rapid development of Internet of Things (IoT) technologies and the potential benefits of employing the vast datasets generated by IoT devices, including wearable sensors and camera systems, has ushered in a new era of opportunities for enhancing smart rehabilitation in various healthcare systems. Maintaining patient privacy is paramount in healthcare while providing smart insights and recommendations. This study proposed the adoption of federated learning to develop a scalable AI model for post-stroke assessment while protecting patients' privacy. This research compares the centralized (PSA-MNMF) model performance with the proposed scalable federated PSA-FL-CDM model for sensor- and camera-based datasets. The computational time indicates that the federated PSA-FL-CDM model significantly reduces the execution time and attains comparable performance while preserving the patient's privacy. -This research introduces groundbreaking contributions to stroke assessment by successfully implementing federated learning for the first time in this domain and applying consensus models in each node. It enables collaborative model training among multiple nodes or clients while ensuring the privacy of raw data. The study explores eight different clustering methods independently on each node, revolutionizing data organization based on similarities in stroke assessment. Additionally, the research applies the centralized PSA-MNMF consensus clustering technique to each client, resulting in more accurate and robust clustering solutions. By utilizing the FedAvg federated learning algorithm strategy, locally trained models are combined to create a global model that captures the collective knowledge of all participants. Comparative performance measurements and computational time analyses are conducted, facilitating a fair evaluation between centralized and federated learning models in stroke assessment. Moreover, the research extends beyond a single type of database by conducting experiments on two distinct datasets, wearable and camera-based, broadening the understanding of the proposed methods across different data modalities. These contributions develop stroke assessment methodologies, enabling efficient collaboration and accurate consensus clustering models and maintaining data privacy.
物联网 (IoT) 技术的快速发展以及利用物联网设备(包括可穿戴传感器和摄像系统)生成的大量数据集的潜在优势,为增强各种医疗保健系统中的智能康复带来了新的机遇。在提供智能洞察和建议的同时,维护患者隐私是医疗保健的首要任务。本研究提出采用联邦学习来开发用于中风评估的可扩展 AI 模型,同时保护患者的隐私。本研究将集中式(PSA-MNMF)模型性能与基于传感器和摄像头的数据集的提出的可扩展联邦 PSA-FL-CDM 模型进行了比较。计算时间表明,联邦 PSA-FL-CDM 模型大大减少了执行时间,并在保留患者隐私的同时实现了可比的性能。-本研究通过首次在该领域成功实施联邦学习并在每个节点应用共识模型,为中风评估做出了开创性的贡献。它允许在多个节点或客户端之间进行协作模型训练,同时确保原始数据的隐私。该研究在每个节点上独立探索了八种不同的聚类方法,根据中风评估的相似性对数据进行了革命性的组织。此外,研究将集中式 PSA-MNMF 共识聚类技术应用于每个客户端,从而得到更准确和稳健的聚类解决方案。通过使用 FedAvg 联邦学习算法策略,将本地训练的模型组合起来创建一个全局模型,该模型可以捕获所有参与者的集体知识。进行了性能测量和计算时间分析,以促进在中风评估中对集中式和联邦学习模型进行公平评估。此外,该研究通过在两个不同的数据集(可穿戴和基于摄像头的数据集)上进行实验,扩展到了单一类型的数据库之外,从而在不同的数据模态中扩展了对所提出方法的理解。这些贡献开发了中风评估方法,实现了高效的协作和准确的共识聚类模型,并维护了数据隐私。