Suppr超能文献

新型生物信息学方法和机器学习方法揭示了过去感染恶性疟原虫的强度和时间的候选生物标志物。

Novel bioinformatic methods and machine learning approaches reveal candidate biomarkers of the intensity and timing of past exposure to Plasmodium falciparum.

作者信息

Bérubé Sophie, Kobayashi Tamaki, Norris Douglas E, Ruczinski Ingo, Moss William J, Wesolowski Amy, Louis Thomas A

机构信息

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America.

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America.

出版信息

PLOS Glob Public Health. 2023 Aug 2;3(8):e0001840. doi: 10.1371/journal.pgph.0001840. eCollection 2023.

Abstract

Accurately quantifying the burden of malaria over time is an important goal of malaria surveillance efforts and can enable effective targeting and evaluation of interventions. Malaria surveillance methods capture active or recent infections which poses several challenges to achieving malaria surveillance goals. In high transmission settings, asymptomatic infections are common and therefore accurate measurement of malaria burden demands active surveillance; in low transmission regions where infections are rare accurate surveillance requires sampling large subsets of the population; and in any context monitoring malaria burden over time necessitates serial sampling. Antibody responses to Plasmodium falciparum parasites persist after infection and therefore measuring antibodies has the potential to overcome several of the current obstacles to accurate malaria surveillance. Identifying which antibody responses are markers of the timing and intensity of past exposure to P. falciparum remains challenging, particularly among adults who tend to be re-exposed multiple times over the course of their lifetime and therefore have similarly high antibody responses to many Plasmodium antigens. A previous analysis of 479 serum samples from individuals in three regions in southern Africa with different historical levels of P. falciparum malaria transmission (high, intermediate, and low) revealed regional differences in antibody responses to P. falciparum antigens among children under 5 years of age. Using a novel bioinformatic pipeline optimized for protein microarrays that minimizes between-sample technical variation, we used antibody responses to Plasmodium antigens as predictors in random forest models to classify samples from adults into these three regions of differing historical malaria transmission with high accuracy (AUC = 0.99). Many of the most important antigens for classification in these models do not overlap with previously published results and are therefore novel candidate markers for the timing and intensity of past exposure to P. falciparum. Measuring antibody responses to these antigens could lead to improved malaria surveillance.

摘要

准确量化疟疾随时间推移的负担是疟疾监测工作的一个重要目标,并且能够使干预措施的目标定位和评估更加有效。疟疾监测方法捕获的是现发或近期感染,这给实现疟疾监测目标带来了若干挑战。在高传播环境中,无症状感染很常见,因此准确测量疟疾负担需要进行主动监测;在感染罕见的低传播地区,准确监测需要对大量人群进行抽样;而在任何情况下,随时间监测疟疾负担都需要进行系列抽样。感染恶性疟原虫后,抗体反应会持续存在,因此检测抗体有可能克服当前准确监测疟疾的一些障碍。确定哪些抗体反应是过去接触恶性疟原虫的时间和强度的标志物仍然具有挑战性,尤其是在成年人中,他们在一生中往往会多次再次接触疟原虫,因此对许多疟原虫抗原都有类似的高抗体反应。先前对来自非洲南部三个地区具有不同历史恶性疟原虫疟疾传播水平(高、中、低)的479份个体血清样本的分析显示,5岁以下儿童对恶性疟原虫抗原的抗体反应存在地区差异。我们使用针对蛋白质微阵列优化的新型生物信息学流程,该流程可最大限度减少样本间的技术差异,我们将对疟原虫抗原的抗体反应用作随机森林模型中的预测指标,以将成年人的样本准确分类到这三个具有不同历史疟疾传播水平的地区(AUC = 0.99)。这些模型中许多用于分类的最重要抗原与先前发表的结果不重叠,因此是过去接触恶性疟原虫的时间和强度的新型候选标志物。检测对这些抗原的抗体反应可能会改善疟疾监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f99c/10395840/a528b0988d3f/pgph.0001840.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验