Suppr超能文献

通过传染潜力确定传染病检测率。

Determining the rate of infectious disease testing through contagion potential.

作者信息

Roy Satyaki, Biswas Preetom, Ghosh Preetam

机构信息

Bioinformatics & Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America.

School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, United States of America.

出版信息

PLOS Glob Public Health. 2023 Aug 2;3(8):e0002229. doi: 10.1371/journal.pgph.0002229. eCollection 2023.

Abstract

The emergence of new strains, varying in transmissibility, virulence, and presentation, makes the existing epidemiological statistics an inadequate representation of COVID-19 contagion. Asymptomatic individuals continue to act as carriers for the elderly and immunocompromised, making the timing and extent of vaccination and testing extremely critical in curbing contagion. In our earlier work, we proposed contagion potential (CP) as a measure of the infectivity of an individual in terms of their contact with other infectious individuals. Here we extend the idea of CP at the level of a geographical region (termed a zone). We estimate CP in a spatiotemporal model based on infection spread through social mixing as well as SIR epidemic model optimization, under varying conditions of virus strains, reinfection, and superspreader events. We perform experiments on the real daily infection dataset at the country level (Italy and Germany) and state level (New York City, USA). Our analysis shows that CP can effectively assess the number of untested (and asymptomatic) infected and inform the necessary testing rates. Finally, we show through simulations that CP can trace the evolution of the infectivity profiles of zones due to the combination of inter-zonal mobility, vaccination policy, and testing rates in real-world scenarios.

摘要

新毒株的出现,在传播性、毒力和表现形式上各有不同,使得现有的流行病学统计数据不足以反映新冠病毒的传播情况。无症状感染者继续成为老年人和免疫功能低下者的病毒携带者,这使得疫苗接种和检测的时间安排及范围对于遏制传播极为关键。在我们早期的工作中,我们提出了传播潜能(CP),作为衡量个体与其他感染者接触时的传染性指标。在此,我们将CP的概念扩展到地理区域(称为区域)层面。我们在一个时空模型中估计CP,该模型基于通过社交接触传播的感染情况以及SIR流行病模型优化,涵盖病毒毒株、再感染和超级传播事件等不同条件。我们在国家层面(意大利和德国)以及州层面(美国纽约市)的实际每日感染数据集上进行实验。我们的分析表明,CP能够有效评估未检测(及无症状)感染者的数量,并为必要的检测率提供依据。最后,我们通过模拟表明,在现实场景中,由于区域间流动、疫苗接种政策和检测率的综合作用,CP能够追踪各区域传染性特征的演变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae88/10395932/9340dd7ae5b5/pgph.0002229.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验