Suppr超能文献

在大流行传播的时空背景下量化流动性和混合倾向。

Quantifying Mobility and Mixing Propensity in the Spatiotemporal Context of a Pandemic Spread.

作者信息

Roy Satyaki, Biswas Preetom, Ghosh Preetam

机构信息

Department of GeneticsUniversity of North Carolina Chapel Hill North Carolina 27514-3916 USA.

Department of Computer Science and EngineeringBangladesh University of Engineering and Technology Dhaka Bangladesh.

出版信息

IEEE Trans Emerg Top Comput Intell. 2021 Mar 17;5(3):321-331. doi: 10.1109/TETCI.2021.3059007. eCollection 2021 Jun.

Abstract

COVID-19 is the most acute global public health crisis of this century. Current trends in the global infected and death numbers suggest that human mobility leading to high social mixing are key players in infection spread, making it imperative to incorporate the spatiotemporal and mobility contexts to future prediction models. In this work, we present a generalized spatiotemporal model that quantifies the role of human social mixing propensity and mobility in pandemic spread through a composite latent factor. The proposed model calculates the exposed population count by utilizing a nonlinear least-squares optimization that exploits the intrinsic linearity in SEIR (Susceptible, Exposed, Infectious, or Recovered). We also present inverse coefficient of variation of the daily exposed curve as a measure for infection duration and spread. We carry out experiments on the mobility and COVID-19 infected and death curves of New York City to show that boroughs with high inter-zone mobility indeed exhibit synchronicity in peaks of the daily exposed curve as well as similar social mixing patterns. Furthermore, we demonstrate that several nations with high inverse coefficient of variations in daily exposed numbers are amongst the worst COVID-19 affected places. Our insights on the effects of lockdown on human mobility motivate future research in the identification of hotspots, design of intelligent mobility strategies and quarantine procedures to curb infection spread.

摘要

新冠疫情是本世纪最严重的全球公共卫生危机。全球感染和死亡人数的当前趋势表明,导致高度社会混合的人员流动是感染传播的关键因素,因此必须将时空和流动背景纳入未来的预测模型。在这项工作中,我们提出了一个广义时空模型,该模型通过一个复合潜在因子来量化人类社会混合倾向和流动在疫情传播中的作用。所提出的模型通过利用一种非线性最小二乘优化来计算暴露人口数量,该优化利用了SEIR(易感、暴露、感染或康复)模型中的内在线性关系。我们还提出了每日暴露曲线的变异系数倒数,作为感染持续时间和传播的一种度量。我们对纽约市的流动情况以及新冠疫情的感染和死亡曲线进行了实验,结果表明,区域间流动性高的行政区在每日暴露曲线的峰值以及类似的社会混合模式方面确实表现出同步性。此外,我们证明,每日暴露数量变异系数倒数较高的几个国家是受新冠疫情影响最严重的地区。我们对封锁对人员流动影响的见解激发了未来在识别热点地区、设计智能流动策略和检疫程序以遏制感染传播方面的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d8c/8545005/e3430e4172a5/roy1-3059007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验