Feng Huihui, Wang Shu, Zou Bin, Yang Zhuoling, Wang Shihan, Wang Wei
School of Geosciences and Info-Physics, Central South University, Changsha 410083, China; Key Laboratory of Spatio-temporal Information and Intelligent Services, Chinese Ministry of Natural Resources, Changsha 410083, China.
School of Geosciences and Info-Physics, Central South University, Changsha 410083, China; Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518000, China.
Sci Total Environ. 2023 Nov 25;901:165932. doi: 10.1016/j.scitotenv.2023.165932. Epub 2023 Jul 31.
Terrestrial carbon uptake is critical to the removal of greenhouse gases and mitigation of global warming, which are closely related to land use and cover change (LUCC). However, understanding terrestrial carbon uptake and the LUCC contribution remains unclear because of complex interactions with other drivers (particularly climate change). By proposing an innovative approach of "trajectory analysis", this study aimed to isolate the LUCC contribution to terrestrial carbon uptake over different scales. Methodologically, global land was first divided into sub-regions of land transformations and stable land trajectories. Then, the carbon uptake change in the stable land trajectory was taken as a synthetic influence of climate change, which was used as a reference to isolate the carbon uptake alternation generated from the LUCC contribution in the land transformation trajectories. Finally, future LUCC and the terrestrial carbon uptake response were predicted under different development pathways. The results showed the global mean net ecosystem production (NEP) was 27.44 ± 36.51 g C m yr in the past two decades (2001-2019), generating 3.15 ± 0.88 Pg C yr of the total terrestrial carbon uptake. Both the NEP and total carbon uptake showed significant increasing trends. Specifically, the mean NEP increased from 17.96 g C m yr in 2001 to 37.37 g C m yr in 2019, with the trend written as y = 1.20× + 15.20 (R = 0.62, p < 0.01). Meanwhile, the total carbon uptake increased from 2.35 Pg C yr in 2001 to 4.13 Pg C yr in 2019, which could be written as y = 0.12× + 1.93 (R = 0.56, p < 0.01). Climate change acted as the dominant factor for the trends at the global scale, which contributed 21.26 g C m yr and 1.59 Pg C yr of the mean NEP and total carbon uptake changes in the stable land trajectories (94.30 million km that covered 63.29 % of the global land area), and the historical LUCC contributed -6.30 g C m yr (-40.85 %) and - 0.046 Pg C yr (-57.50 %) of the mean NEP and the total carbon uptake change in the land transformation trajectories (6.64 million km that covered 4.46 % of the global land area), respectively. The maximum LUCC contribution (-61.85 g C m yr) to the mean NEP occurred in the land transformations from evergreen needleleaf forests to woody savannas, while the maximum contribution (-0.034 Pg C y) to total carbon uptake was in the deforested regions from evergreen broadleaf forests to woody savannas. Eight SSP-RCP scenarios predictions demonstrated that future terrestrial carbon uptake would increase by an average of 0.015 Pg C yr in 2100 due to global afforestation. SSP4-3.4 and SSP5-3.4 had the greatest potential for increasing carbon uptake, which is expected to reach a maximum increase (0.045 Pg C yr) in 2100. In contrast, the minimum terrestrial carbon uptake would occur in SSP5-8.5, which had the highest CO emissions. In conclusion, although relatively limited at the global scale, LUCC (particularly forest change) exerted an unneglectable role on terrestrial carbon uptake in land transformation regions. The results of this study will help to clarify terrestrial carbon uptake dynamics and provide a basis for carbon neutral and climatic adaptation.
陆地碳吸收对于去除温室气体和缓解全球变暖至关重要,而这与土地利用和覆盖变化(LUCC)密切相关。然而,由于与其他驱动因素(特别是气候变化)的复杂相互作用,对陆地碳吸收和LUCC贡献的理解仍不明确。通过提出一种创新的“轨迹分析”方法,本研究旨在分离出不同尺度上LUCC对陆地碳吸收的贡献。在方法上,首先将全球陆地划分为土地转换和稳定土地轨迹的子区域。然后,将稳定土地轨迹中的碳吸收变化作为气候变化的综合影响,以此为参考来分离土地转换轨迹中LUCC贡献所产生的碳吸收变化。最后,预测了不同发展路径下未来的LUCC和陆地碳吸收响应。结果表明,在过去二十年(2001 - 2019年)中,全球平均净生态系统生产(NEP)为27.44±36.51 g C m⁻² yr⁻¹,产生了3.15±0.88 Pg C yr⁻¹的陆地总碳吸收量。NEP和总碳吸收量均呈现出显著的增加趋势。具体而言,平均NEP从2001年的17.96 g C m⁻² yr⁻¹增加到2019年的37.37 g C m⁻² yr⁻¹,趋势方程为y = 1.20x + 15.20(R = 0.62,p < 0.01)。同时,总碳吸收量从2001年的2.35 Pg C yr⁻¹增加到2019年的4.13 Pg C yr⁻¹,可表示为y = 0.12x + 1.93(R = 0.56,p < 0.01)。气候变化是全球尺度趋势的主导因素,在稳定土地轨迹(9430万平方千米,占全球陆地面积的63.29%)中,它对平均NEP和总碳吸收变化的贡献分别为21.26 g C m⁻² yr⁻¹和1.59 Pg C yr⁻¹,而历史LUCC在土地转换轨迹(664万平方千米,占全球陆地面积的4.46%)中对平均NEP和总碳吸收变化的贡献分别为 - 6.30 g C m⁻² yr⁻¹(- 40.85%)和 - 0.046 Pg C yr⁻¹(- 57.50%)。LUCC对平均NEP的最大贡献(- 61.85 g C m⁻² yr⁻¹)发生在从常绿针叶林到木本稀树草原的土地转换中,而对总碳吸收的最大贡献(- 0.034 Pg C yr⁻¹)则出现在从常绿阔叶林到木本稀树草原的森林砍伐区域。八个SSP - RCP情景预测表明,由于全球造林,到2100年未来陆地碳吸收量将平均每年增加0.015 Pg C。SSP4 - 3.4和SSP5 - 3.4具有最大的碳吸收增加潜力,预计到2100年将达到最大增幅(0.045 Pg C yr⁻¹)。相比之下,陆地碳吸收量最少的情况将出现在CO₂排放量最高的SSP5 - 8.5情景中。总之,尽管在全球尺度上相对有限,但LUCC(特别是森林变化)在土地转换区域对陆地碳吸收发挥了不可忽视的作用。本研究结果将有助于阐明陆地碳吸收动态,并为碳中和和气候适应提供依据。