Suppr超能文献

基于深度学习的滤泡性甲状腺肿瘤病理图像鉴别诊断。

Deep Learning-Based Differential Diagnosis of Follicular Thyroid Tumors Using Histopathological Images.

机构信息

Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan.

Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan.

出版信息

Mod Pathol. 2023 Nov;36(11):100296. doi: 10.1016/j.modpat.2023.100296. Epub 2023 Jul 31.

Abstract

Deep learning systems (DLSs) have been developed for the histopathological assessment of various types of tumors, but none are suitable for differential diagnosis between follicular thyroid carcinoma (FTC) and follicular adenoma (FA). Furthermore, whether DLSs can identify the malignant characteristics of thyroid tumors based only on random views of tumor tissue histology has not been evaluated. In this study, we developed DLSs able to differentiate between FTC and FA based on 3 types of convolutional neural network architecture: EfficientNet, VGG16, and ResNet50. The performance of all 3 DLSs was excellent (area under the receiver operating characteristic curve = 0.91 ± 0.04; F1 score = 0.82 ± 0.06). Visual explanations using gradient-weighted class activation mapping suggested that the diagnosis of both FTC and FA was largely dependent on nuclear features. The DLSs were then trained with FTC images and linked information (presence or absence of recurrence within 10 years, vascular invasion, and wide capsular invasion). The ability of the DLSs to diagnose these characteristics was then determined. The results showed that, based on the random views of histology, the DLSs could predict the risk of FTC recurrence, vascular invasion, and wide capsular invasion with a certain level of accuracy (area under the receiver operating characteristic curve = 0.67 ± 0.13, 0.62 ± 0.11, and 0.65 ± 0.09, respectively). Further improvement of our DLSs could lead to the establishment of automated differential diagnosis systems requiring only biopsy specimens.

摘要

深度学习系统(DLS)已经被开发用于各种类型肿瘤的组织病理学评估,但没有一种适用于滤泡状甲状腺癌(FTC)和滤泡性腺瘤(FA)的鉴别诊断。此外,DLS 是否仅基于肿瘤组织病理学的随机视图就能识别甲状腺肿瘤的恶性特征尚未得到评估。在这项研究中,我们开发了能够基于 3 种卷积神经网络架构(EfficientNet、VGG16 和 ResNet50)区分 FTC 和 FA 的 DLS。所有 3 种 DLS 的性能都非常出色(受试者工作特征曲线下面积=0.91±0.04;F1 评分=0.82±0.06)。使用梯度加权类激活映射的可视化解释表明,FTC 和 FA 的诊断在很大程度上依赖于核特征。然后,使用 FTC 图像和相关信息(10 年内是否复发、血管侵犯和广泛包膜侵犯)对 DLS 进行训练。然后确定 DLS 诊断这些特征的能力。结果表明,基于组织病理学的随机视图,DLS 可以在一定程度上准确预测 FTC 复发、血管侵犯和广泛包膜侵犯的风险(受试者工作特征曲线下面积分别为 0.67±0.13、0.62±0.11 和 0.65±0.09)。进一步改进我们的 DLS 可以导致建立仅需要活检标本的自动鉴别诊断系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验