Suppr超能文献

深度学习辅助下的甲状腺术中冰冻切片病变的病理学诊断。

Pathology diagnosis of intraoperative frozen thyroid lesions assisted by deep learning.

机构信息

Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, China.

Department of Pathology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.

出版信息

BMC Cancer. 2024 Aug 29;24(1):1069. doi: 10.1186/s12885-024-12849-8.

Abstract

BACKGROUND

Thyroid cancer is a common thyroid malignancy. The majority of thyroid lesion needs intraoperative frozen pathology diagnosis, which provides important information for precision operation. As digital whole slide images (WSIs) develop, deep learning methods for histopathological classification of the thyroid gland (paraffin sections) have achieved outstanding results. Our current study is to clarify whether deep learning assists pathology diagnosis for intraoperative frozen thyroid lesions or not.

METHODS

We propose an artificial intelligence-assisted diagnostic system for frozen thyroid lesions that applies prior knowledge in tandem with a dichotomous judgment of whether the lesion is cancerous or not and a quadratic judgment of the type of cancerous lesion to categorize the frozen thyroid lesions into five categories: papillary thyroid carcinoma, medullary thyroid carcinoma, anaplastic thyroid carcinoma, follicular thyroid tumor, and non-cancerous lesion. We obtained 4409 frozen digital pathology sections (WSI) of thyroid from the First Affiliated Hospital of Sun Yat-sen University (SYSUFH) to train and test the model, and the performance was validated by a six-fold cross validation, 101 papillary microcarcinoma sections of thyroid were used to validate the system's sensitivity, and 1388 WSIs of thyroid were used for the evaluation of the external dataset. The deep learning models were compared in terms of several metrics such as accuracy, F1 score, recall, precision and AUC (Area Under Curve).

RESULTS

We developed the first deep learning-based frozen thyroid diagnostic classifier for histopathological WSI classification of papillary carcinoma, medullary carcinoma, follicular tumor, anaplastic carcinoma, and non-carcinoma lesion. On test slides, the system had an accuracy of 0.9459, a precision of 0.9475, and an AUC of 0.9955. In the papillary carcinoma test slides, the system was able to accurately predict even lesions as small as 2 mm in diameter. Tested with the acceleration component, the cut processing can be performed in 346.12 s and the visual inference prediction results can be obtained in 98.61 s, thus meeting the time requirements for intraoperative diagnosis. Our study employs a deep learning approach for high-precision classification of intraoperative frozen thyroid lesion distribution in the clinical setting, which has potential clinical implications for assisting pathologists and precision surgery of thyroid lesions.

摘要

背景

甲状腺癌是一种常见的甲状腺恶性肿瘤。大多数甲状腺病变需要术中冷冻病理诊断,这为精准手术提供了重要信息。随着数字全切片图像(WSI)的发展,甲状腺组织学分类的深度学习方法已经取得了优异的成果。我们目前的研究旨在阐明深度学习是否有助于术中冷冻甲状腺病变的病理诊断。

方法

我们提出了一种人工智能辅助诊断系统,用于冷冻甲状腺病变,该系统将先验知识与病变是否为癌症的二分类判断以及癌症病变类型的二分类判断相结合,将冷冻甲状腺病变分为五类:甲状腺乳头状癌、甲状腺髓样癌、甲状腺未分化癌、滤泡性甲状腺肿瘤和非癌性病变。我们从中山大学附属第一医院(SYSUFH)获得了 4409 个甲状腺冷冻数字病理学切片(WSI)来训练和测试模型,并通过六重交叉验证验证了模型的性能,使用 101 个甲状腺微小乳头状癌切片验证了系统的敏感性,使用 1388 个甲状腺 WSI 评估了外部数据集。我们比较了几种指标,如准确率、F1 分数、召回率、精确率和 AUC(曲线下面积)。

结果

我们开发了第一个基于深度学习的冷冻甲状腺诊断分类器,用于对甲状腺乳头状癌、髓样癌、滤泡肿瘤、未分化癌和非癌性病变的组织病理学 WSI 分类。在测试切片上,该系统的准确率为 0.9459,精确率为 0.9475,AUC 为 0.9955。在甲状腺微小乳头状癌测试切片上,该系统能够准确预测直径甚至小至 2mm 的病变。使用加速组件进行测试时,切分处理可以在 346.12s 内完成,并且可以在 98.61s 内获得可视化推理预测结果,从而满足术中诊断的时间要求。我们的研究采用深度学习方法对临床环境中术中冷冻甲状腺病变分布进行高精度分类,这对辅助病理学家和甲状腺病变的精准手术具有潜在的临床意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a621/11363383/d3857c810200/12885_2024_12849_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验