Ran Zhaoyu, Wang Rui, Fu Jing, Yang Mingcong, Li Manxi, Hu Jun, He Jinliang, Li Qi
A State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China.
Adv Mater. 2023 Nov;35(46):e2303849. doi: 10.1002/adma.202303849. Epub 2023 Oct 11.
The growing need for high-power and compact-size energy storage in modern electronic and electrical systems demands polymer film capacitors with excellent temperature capability. However, conventional polymer dielectrics feature dramatic deterioration in capacitive performance under concurrent high temperature and electric field because the high thermal stability traditionally relies on the conjugated, planar molecular segments in the polymer chains. Herein, inspired by the stable double helix structures of deoxyribonucleic acid, spiral-structured dielectric polymers that exhibit simultaneous high thermal stability and great capacitive performance are demonstrated. Both the experimental results and computational simulations confirm that the spiral groups serve to weaken the electrostatic molecular interaction, induce proper molecular chain stacking structure, and regulate the charge transfer process by breaking the conjugated planes and introducing deep trap sites. The resultant polymer exhibits the maximum discharged energy densities of 7.29 and 6.13 J cm with the charge-discharge efficiency above 90% at 150 and 200 °C, respectively, more than ten times those of the original dielectric at the same conditions. Here a completely new dimension is offered for the molecular design of polymers, giving rise to well-balanced thermal and dielectric properties, and ultimately the desired capacitive energy storage performance at high temperatures.
现代电子和电气系统对高功率、紧凑型储能的需求不断增长,这就需要具有优异温度性能的聚合物薄膜电容器。然而,传统的聚合物电介质在高温和电场同时作用下,电容性能会急剧下降,因为传统的高热稳定性依赖于聚合物链中的共轭平面分子链段。在此,受脱氧核糖核酸稳定双螺旋结构的启发,展示了一种同时具有高热稳定性和优异电容性能的螺旋结构介电聚合物。实验结果和计算模拟均证实,螺旋基团有助于减弱静电分子相互作用,诱导合适的分子链堆积结构,并通过打破共轭平面和引入深陷阱位点来调节电荷转移过程。所得聚合物在150和200℃时的最大放电能量密度分别为7.29和6.13 J/cm³,充放电效率均高于90%,是相同条件下原始电介质的十多倍。这里为聚合物的分子设计提供了一个全新的维度,从而实现了热性能和介电性能的良好平衡,并最终在高温下获得了所需的电容储能性能。