Suppr超能文献

梯型聚芳醚砜共聚物在高温电容储能中的应用

Ladderphane copolymers for high-temperature capacitive energy storage.

机构信息

Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Department of Polymer Science and Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China.

Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA.

出版信息

Nature. 2023 Mar;615(7950):62-66. doi: 10.1038/s41586-022-05671-4. Epub 2023 Mar 1.

Abstract

For capacitive energy storage at elevated temperatures, dielectric polymers are required to integrate low electrical conduction with high thermal conductivity. The coexistence of these seemingly contradictory properties remains a persistent challenge for existing polymers. We describe here a class of ladderphane copolymers exhibiting more than one order of magnitude lower electrical conductivity than the existing polymers at high electric fields and elevated temperatures. Consequently, the ladderphane copolymer possesses a discharged energy density of 5.34 J cm with a charge-discharge efficiency of 90% at 200 °C, outperforming the existing dielectric polymers and composites. The ladderphane copolymers self-assemble into highly ordered arrays by π-π stacking interactions, thus giving rise to an intrinsic through-plane thermal conductivity of 1.96 ± 0.06 W m K. The high thermal conductivity of the copolymer film permits efficient Joule heat dissipation and, accordingly, excellent cyclic stability at elevated temperatures and high electric fields. The demonstration of the breakdown self-healing ability of the copolymer further suggests the promise of the ladderphane structures for high-energy-density polymer capacitors operating under extreme conditions.

摘要

对于高温下的电容储能,介电聚合物需要将低电导率与高热导率集成在一起。这些看似矛盾的特性的共存仍然是现有聚合物面临的一个持续挑战。我们在这里描述了一类梯烷共聚物,它们在高电场和高温下的电导率比现有聚合物低一个数量级以上。因此,梯烷共聚物在 200°C 时的放电能量密度为 5.34 J/cm,充放电效率为 90%,优于现有的介电聚合物和复合材料。梯烷共聚物通过π-π 堆积相互作用自组装成高度有序的阵列,从而产生 1.96±0.06 W/mK 的固有面内热导率。共聚物薄膜的高热导率允许有效耗散焦耳热,因此在高温和高电场下具有优异的循环稳定性。共聚物的击穿自修复能力的演示进一步表明了梯烷结构在极端条件下运行的高能量密度聚合物电容器中的应用前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验