Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Department of Polymer Science and Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China.
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA.
Nature. 2023 Mar;615(7950):62-66. doi: 10.1038/s41586-022-05671-4. Epub 2023 Mar 1.
For capacitive energy storage at elevated temperatures, dielectric polymers are required to integrate low electrical conduction with high thermal conductivity. The coexistence of these seemingly contradictory properties remains a persistent challenge for existing polymers. We describe here a class of ladderphane copolymers exhibiting more than one order of magnitude lower electrical conductivity than the existing polymers at high electric fields and elevated temperatures. Consequently, the ladderphane copolymer possesses a discharged energy density of 5.34 J cm with a charge-discharge efficiency of 90% at 200 °C, outperforming the existing dielectric polymers and composites. The ladderphane copolymers self-assemble into highly ordered arrays by π-π stacking interactions, thus giving rise to an intrinsic through-plane thermal conductivity of 1.96 ± 0.06 W m K. The high thermal conductivity of the copolymer film permits efficient Joule heat dissipation and, accordingly, excellent cyclic stability at elevated temperatures and high electric fields. The demonstration of the breakdown self-healing ability of the copolymer further suggests the promise of the ladderphane structures for high-energy-density polymer capacitors operating under extreme conditions.
对于高温下的电容储能,介电聚合物需要将低电导率与高热导率集成在一起。这些看似矛盾的特性的共存仍然是现有聚合物面临的一个持续挑战。我们在这里描述了一类梯烷共聚物,它们在高电场和高温下的电导率比现有聚合物低一个数量级以上。因此,梯烷共聚物在 200°C 时的放电能量密度为 5.34 J/cm,充放电效率为 90%,优于现有的介电聚合物和复合材料。梯烷共聚物通过π-π 堆积相互作用自组装成高度有序的阵列,从而产生 1.96±0.06 W/mK 的固有面内热导率。共聚物薄膜的高热导率允许有效耗散焦耳热,因此在高温和高电场下具有优异的循环稳定性。共聚物的击穿自修复能力的演示进一步表明了梯烷结构在极端条件下运行的高能量密度聚合物电容器中的应用前景。