Suppr超能文献

基于微观结构表征利用图神经网络进行材料疲劳预测。

Materials fatigue prediction using graph neural networks on microstructure representations.

作者信息

Thomas Akhil, Durmaz Ali Riza, Alam Mehwish, Gumbsch Peter, Sack Harald, Eberl Chris

机构信息

Fraunhofer Institute for Mechanics of Materials, Freiburg, Germany.

Chair of Micro and Materials Mechanics, Department of Microsystems, University of Freiburg, Freiburg, Germany.

出版信息

Sci Rep. 2023 Aug 2;13(1):12562. doi: 10.1038/s41598-023-39400-2.

Abstract

The local prediction of fatigue damage within polycrystals in a high-cycle fatigue setting is a long-lasting and challenging task. It requires identifying grains tending to accumulate plastic deformation under cyclic loading. We address this task by transcribing ferritic steel microtexture and damage maps from experiments into a microstructure graph. Here, grains constitute graph nodes connected by edges whenever grains share a common boundary. Fatigue loading causes some grains to develop slip markings, which can evolve into microcracks and lead to failure. This data set enables applying graph neural network variants on the task of binary grain-wise damage classification. The objective is to identify suitable data representations and models with an appropriate inductive bias to learn the underlying damage formation causes. Here, graph convolutional networks yielded the best performance with a balanced accuracy of 0.72 and a F-score of 0.34, outperforming phenomenological crystal plasticity (+ 68%) and conventional machine learning (+ 17%) models by large margins. Further, we present an interpretability analysis that highlights the grains along with features that are considered important by the graph model for the prediction of fatigue damage initiation, thus demonstrating the potential of such techniques to reveal underlying mechanisms and microstructural driving forces in critical grain ensembles.

摘要

在高周疲劳环境下对多晶体内疲劳损伤进行局部预测是一项长期且具有挑战性的任务。这需要识别在循环载荷下倾向于累积塑性变形的晶粒。我们通过将实验中的铁素体钢微观组织和损伤图转录到微观结构图中来解决这个任务。在这里,晶粒构成图节点,只要晶粒共享公共边界,它们就由边连接。疲劳载荷会导致一些晶粒产生滑移痕迹,这些痕迹可能演变成微裂纹并导致失效。该数据集能够将图神经网络变体应用于二元晶粒级损伤分类任务。目标是识别合适的数据表示和具有适当归纳偏差的模型,以了解潜在的损伤形成原因。在这里,图卷积网络表现最佳,平衡准确率为0.72,F分数为0.34,大大优于唯象晶体塑性模型(提高68%)和传统机器学习模型(提高17%)。此外,我们进行了可解释性分析,突出了图模型认为对疲劳损伤起始预测很重要的晶粒及其特征,从而证明了此类技术揭示关键晶粒集合中潜在机制和微观结构驱动力的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7020/10397301/8aa950dd1f08/41598_2023_39400_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验