Suppr超能文献

深度学习方法用于复杂微观结构推断。

A deep learning approach for complex microstructure inference.

机构信息

Fraunhofer Institute for Mechanics of Materials IWM, Freiburg, 79108, Germany.

Karlsruhe Institute of Technology (KIT), Institute for Applied Materials IAM, Karlsruhe, 76131, Germany.

出版信息

Nat Commun. 2021 Nov 1;12(1):6272. doi: 10.1038/s41467-021-26565-5.

Abstract

Automated, reliable, and objective microstructure inference from micrographs is essential for a comprehensive understanding of process-microstructure-property relations and tailored materials development. However, such inference, with the increasing complexity of microstructures, requires advanced segmentation methodologies. While deep learning offers new opportunities, an intuition about the required data quality/quantity and a methodological guideline for microstructure quantification is still missing. This, along with deep learning's seemingly intransparent decision-making process, hampers its breakthrough in this field. We apply a multidisciplinary deep learning approach, devoting equal attention to specimen preparation and imaging, and train distinct U-Net architectures with 30-50 micrographs of different imaging modalities and electron backscatter diffraction-informed annotations. On the challenging task of lath-bainite segmentation in complex-phase steel, we achieve accuracies of 90% rivaling expert segmentations. Further, we discuss the impact of image context, pre-training with domain-extrinsic data, and data augmentation. Network visualization techniques demonstrate plausible model decisions based on grain boundary morphology.

摘要

从显微图像中自动、可靠且客观地推断微观结构对于全面了解工艺-微观结构-性能关系和定制材料开发至关重要。然而,随着微观结构的日益复杂,这种推断需要先进的分割方法。虽然深度学习提供了新的机会,但对于所需数据质量/数量以及微观结构量化的方法学指导原则仍然缺乏了解。这一点,再加上深度学习看似不透明的决策过程,阻碍了它在该领域的突破。我们采用了多学科深度学习方法,同等重视样本制备和成像,并使用不同成像模式和电子背散射衍射信息注释的 30-50 张显微图像来训练不同的 U-Net 架构。在复杂相钢中板条贝氏体分割这一具有挑战性的任务中,我们实现了 90%的准确率,可与专家分割相媲美。此外,我们还讨论了图像上下文、使用领域外数据进行预训练以及数据增强的影响。网络可视化技术基于晶界形态展示了合理的模型决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a245/8560760/443c348d4bd2/41467_2021_26565_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验