Department of Mathematics, University of Sussex, Falmer, Brighton, BN1 9QH, UK.
Network Science Institute, Northeastern University London, London, E1W 1LP, UK.
J Math Biol. 2023 Aug 2;87(2):36. doi: 10.1007/s00285-023-01967-9.
We prove that it is possible to obtain the exact closure of SIR pairwise epidemic equations on a configuration model network if and only if the degree distribution follows a Poisson, binomial, or negative binomial distribution. The proof relies on establishing the equivalence, for these specific degree distributions, between the closed pairwise model and a dynamical survival analysis (DSA) model that was previously shown to be exact. Specifically, we demonstrate that the DSA model is equivalent to the well-known edge-based Volz model. Using this result, we also provide reductions of the closed pairwise and Volz models to a single equation that involves only susceptibles. This equation has a useful statistical interpretation in terms of times to infection. We provide some numerical examples to illustrate our results.
我们证明,如果网络的度分布遵循泊松分布、二项分布或负二项分布,则可以获得 SIR 成对传染病方程的确切封闭解。证明依赖于为这些特定的度分布建立封闭的成对模型与之前证明为精确的动态生存分析(DSA)模型之间的等价性。具体来说,我们证明 DSA 模型等价于著名的基于边缘的 Volz 模型。利用这一结果,我们还将封闭的成对模型和 Volz 模型简化为仅涉及易感染者的单个方程。这个方程在感染时间方面具有有用的统计解释。我们提供了一些数值示例来说明我们的结果。