Suppr超能文献

消息传递、成对、Kermack-McKendrick模型与随机SIR传染病模型之间的关系。

The relationships between message passing, pairwise, Kermack-McKendrick and stochastic SIR epidemic models.

作者信息

Wilkinson Robert R, Ball Frank G, Sharkey Kieran J

机构信息

The University of Liverpool, Liverpool, UK.

School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.

出版信息

J Math Biol. 2017 Dec;75(6-7):1563-1590. doi: 10.1007/s00285-017-1123-8. Epub 2017 Apr 13.

Abstract

We consider a very general stochastic model for an SIR epidemic on a network which allows an individual's infectious period, and the time it takes to contact each of its neighbours after becoming infected, to be correlated. We write down the message passing system of equations for this model and prove, for the first time, that it has a unique feasible solution. We also generalise an earlier result by proving that this solution provides a rigorous upper bound for the expected epidemic size (cumulative number of infection events) at any fixed time [Formula: see text]. We specialise these results to a homogeneous special case where the graph (network) is symmetric. The message passing system here reduces to just four equations. We prove that cycles in the network inhibit the spread of infection, and derive important epidemiological results concerning the final epidemic size and threshold behaviour for a major outbreak. For Poisson contact processes, this message passing system is equivalent to a non-Markovian pair approximation model, which we show has well-known pairwise models as special cases. We show further that a sequence of message passing systems, starting with the homogeneous one just described, converges to the deterministic Kermack-McKendrick equations for this stochastic model. For Poisson contact and recovery, we show that this convergence is monotone, from which it follows that the message passing system (and hence also the pairwise model) here provides a better approximation to the expected epidemic size at time [Formula: see text] than the Kermack-McKendrick model.

摘要

我们考虑一个非常通用的网络上SIR传染病随机模型,该模型允许个体的传染期以及感染后接触其每个邻居所需的时间具有相关性。我们写下此模型的消息传递方程组,并首次证明它有唯一的可行解。我们还推广了一个早期结果,证明该解为任何固定时间[公式:见原文]的预期疫情规模(累积感染事件数)提供了严格的上界。我们将这些结果专门应用于图(网络)对称的均匀特殊情况。这里的消息传递系统简化为仅四个方程。我们证明网络中的环抑制感染传播,并得出关于最终疫情规模和重大疫情爆发阈值行为的重要流行病学结果。对于泊松接触过程,此消息传递系统等同于一个非马尔可夫对近似模型,我们表明其特殊情况为众所周知的成对模型。我们进一步表明,从刚刚描述的均匀模型开始的一系列消息传递系统收敛到该随机模型的确定性Kermack - McKendrick方程。对于泊松接触和恢复情况,我们表明这种收敛是单调的,由此可知这里的消息传递系统(因此成对模型也是)在时间[公式:见原文]时比Kermack - McKendrick模型能更好地近似预期疫情规模。

相似文献

2
Impact of the infectious period on epidemics.传染期对流行病的影响。
Phys Rev E. 2018 May;97(5-1):052403. doi: 10.1103/PhysRevE.97.052403.
4
Exact Equations for SIR Epidemics on Tree Graphs.树状图上SIR传染病模型的精确方程
Bull Math Biol. 2015 Apr;77(4):614-45. doi: 10.1007/s11538-013-9923-5. Epub 2013 Dec 18.
5
A Fractional Order Recovery SIR Model from a Stochastic Process.一个源于随机过程的分数阶恢复SIR模型。
Bull Math Biol. 2016 Mar;78(3):468-99. doi: 10.1007/s11538-016-0151-7. Epub 2016 Mar 3.
6
Mean-field models for non-Markovian epidemics on networks.网络上非马尔可夫传染病的平均场模型。
J Math Biol. 2018 Feb;76(3):755-778. doi: 10.1007/s00285-017-1155-0. Epub 2017 Jul 6.
8
Global stability properties of a class of renewal epidemic models.一类更新型传染病模型的全局稳定性性质
J Math Biol. 2019 May;78(6):1713-1725. doi: 10.1007/s00285-018-01324-1. Epub 2019 Feb 9.
9
Fundamental bound on epidemic overshoot in the SIR model.SIR 模型中传染病超量的基本界。
J R Soc Interface. 2023 Dec;20(209):20230322. doi: 10.1098/rsif.2023.0322. Epub 2023 Dec 6.

引用本文的文献

1
Contact tracing - Old models and new challenges.接触者追踪——旧模式与新挑战。
Infect Dis Model. 2020 Dec 30;6:222-231. doi: 10.1016/j.idm.2020.12.005. eCollection 2021.
2
Epidemic model on a network: Analysis and applications to COVID-19.网络上的流行病模型:对COVID-19的分析与应用
Physica A. 2021 Feb 15;564:125520. doi: 10.1016/j.physa.2020.125520. Epub 2020 Nov 5.
3
Impact of the infectious period on epidemics.传染期对流行病的影响。
Phys Rev E. 2018 May;97(5-1):052403. doi: 10.1103/PhysRevE.97.052403.
4
Pairwise approximation for -type network epidemics with non-Markovian recovery.具有非马尔可夫恢复的-型网络流行病的成对近似
Proc Math Phys Eng Sci. 2018 Feb;474(2210):20170695. doi: 10.1098/rspa.2017.0695. Epub 2018 Feb 21.
5
Mean-field models for non-Markovian epidemics on networks.网络上非马尔可夫传染病的平均场模型。
J Math Biol. 2018 Feb;76(3):755-778. doi: 10.1007/s00285-017-1155-0. Epub 2017 Jul 6.

本文引用的文献

1
Pairwise approximation for -type network epidemics with non-Markovian recovery.具有非马尔可夫恢复的-型网络流行病的成对近似
Proc Math Phys Eng Sci. 2018 Feb;474(2210):20170695. doi: 10.1098/rspa.2017.0695. Epub 2018 Feb 21.
2
Mean-field models for non-Markovian epidemics on networks.网络上非马尔可夫传染病的平均场模型。
J Math Biol. 2018 Feb;76(3):755-778. doi: 10.1007/s00285-017-1155-0. Epub 2017 Jul 6.
4
Generalization of Pairwise Models to non-Markovian Epidemics on Networks.将成对模型推广到网络上的非马尔可夫流行病。
Phys Rev Lett. 2015 Aug 14;115(7):078701. doi: 10.1103/PhysRevLett.115.078701. Epub 2015 Aug 13.
6
A note on the derivation of epidemic final sizes.关于流行病最终规模的推导的注释。
Bull Math Biol. 2012 Sep;74(9):2125-41. doi: 10.1007/s11538-012-9749-6. Epub 2012 Jul 25.
7
Edge-based compartmental modelling for infectious disease spread.基于边缘的传染病传播隔间建模。
J R Soc Interface. 2012 May 7;9(70):890-906. doi: 10.1098/rsif.2011.0403. Epub 2011 Oct 5.
8
Networks and the epidemiology of infectious disease.网络与传染病流行病学
Interdiscip Perspect Infect Dis. 2011;2011:284909. doi: 10.1155/2011/284909. Epub 2011 Mar 16.
9
Message passing approach for general epidemic models.通用传染病模型的消息传递方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 2):016101. doi: 10.1103/PhysRevE.82.016101. Epub 2010 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验