Wilkinson Robert R, Ball Frank G, Sharkey Kieran J
The University of Liverpool, Liverpool, UK.
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
J Math Biol. 2017 Dec;75(6-7):1563-1590. doi: 10.1007/s00285-017-1123-8. Epub 2017 Apr 13.
We consider a very general stochastic model for an SIR epidemic on a network which allows an individual's infectious period, and the time it takes to contact each of its neighbours after becoming infected, to be correlated. We write down the message passing system of equations for this model and prove, for the first time, that it has a unique feasible solution. We also generalise an earlier result by proving that this solution provides a rigorous upper bound for the expected epidemic size (cumulative number of infection events) at any fixed time [Formula: see text]. We specialise these results to a homogeneous special case where the graph (network) is symmetric. The message passing system here reduces to just four equations. We prove that cycles in the network inhibit the spread of infection, and derive important epidemiological results concerning the final epidemic size and threshold behaviour for a major outbreak. For Poisson contact processes, this message passing system is equivalent to a non-Markovian pair approximation model, which we show has well-known pairwise models as special cases. We show further that a sequence of message passing systems, starting with the homogeneous one just described, converges to the deterministic Kermack-McKendrick equations for this stochastic model. For Poisson contact and recovery, we show that this convergence is monotone, from which it follows that the message passing system (and hence also the pairwise model) here provides a better approximation to the expected epidemic size at time [Formula: see text] than the Kermack-McKendrick model.
我们考虑一个非常通用的网络上SIR传染病随机模型,该模型允许个体的传染期以及感染后接触其每个邻居所需的时间具有相关性。我们写下此模型的消息传递方程组,并首次证明它有唯一的可行解。我们还推广了一个早期结果,证明该解为任何固定时间[公式:见原文]的预期疫情规模(累积感染事件数)提供了严格的上界。我们将这些结果专门应用于图(网络)对称的均匀特殊情况。这里的消息传递系统简化为仅四个方程。我们证明网络中的环抑制感染传播,并得出关于最终疫情规模和重大疫情爆发阈值行为的重要流行病学结果。对于泊松接触过程,此消息传递系统等同于一个非马尔可夫对近似模型,我们表明其特殊情况为众所周知的成对模型。我们进一步表明,从刚刚描述的均匀模型开始的一系列消息传递系统收敛到该随机模型的确定性Kermack - McKendrick方程。对于泊松接触和恢复情况,我们表明这种收敛是单调的,由此可知这里的消息传递系统(因此成对模型也是)在时间[公式:见原文]时比Kermack - McKendrick模型能更好地近似预期疫情规模。