Department of Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria St, Toronto, ON, M5B 0A1, Canada.
Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto Metropolitan University & St. Michael's Hospital, Toronto, Canada.
BMC Pregnancy Childbirth. 2023 Aug 2;23(1):553. doi: 10.1186/s12884-023-05679-2.
Pregnant people are particularly vulnerable to SARS-CoV-2 infection and to ensuing severe illness. Predicting adverse maternal and perinatal outcomes could aid clinicians in deciding on hospital admission and early initiation of treatment in affected individuals, streamlining the triaging processes.
An international repository of 1501 SARS-CoV-2-positive cases in pregnancy was created, consisting of demographic variables, patient comorbidities, laboratory markers, respiratory parameters, and COVID-19-related symptoms. Data were filtered, preprocessed, and feature selection methods were used to obtain the optimal feature subset for training a variety of machine learning models to predict maternal or fetal/neonatal death or critical illness.
The Random Forest model demonstrated the best performance among the trained models, correctly identifying 83.3% of the high-risk patients and 92.5% of the low-risk patients, with an overall accuracy of 89.0%, an AUC of 0.90 (95% Confidence Interval 0.83 to 0.95), and a recall, precision, and F1 score of 0.85, 0.94, and 0.89, respectively. This was achieved using a feature subset of 25 features containing patient characteristics, symptoms, clinical signs, and laboratory markers. These included maternal BMI, gravidity, parity, existence of pre-existing conditions, nicotine exposure, anti-hypertensive medication administration, fetal malformations, antenatal corticosteroid administration, presence of dyspnea, sore throat, fever, fatigue, duration of symptom phase, existence of COVID-19-related pneumonia, need for maternal oxygen administration, disease-related inpatient treatment, and lab markers including sFLT-1/PlGF ratio, platelet count, and LDH.
We present the first COVID-19 prognostication pipeline specifically for pregnant patients while utilizing a large SARS-CoV-2 in pregnancy data repository. Our model accurately identifies those at risk of severe illness or clinical deterioration, presenting a promising tool for advancing personalized medicine in pregnant patients with COVID-19.
孕妇特别容易感染 SARS-CoV-2,继而患上严重疾病。预测不良的母婴和围产期结局可以帮助临床医生在受影响的个体中决定住院和早期开始治疗,从而简化分诊过程。
创建了一个包含 1501 例 SARS-CoV-2 阳性妊娠病例的国际存储库,其中包含人口统计学变量、患者合并症、实验室标志物、呼吸参数和 COVID-19 相关症状。对数据进行过滤、预处理,并使用特征选择方法获得最佳特征子集,以训练各种机器学习模型来预测母亲或胎儿/新生儿死亡或重症疾病。
随机森林模型在训练的模型中表现最佳,正确识别了 83.3%的高危患者和 92.5%的低危患者,整体准确率为 89.0%,AUC 为 0.90(95%置信区间为 0.83 至 0.95),召回率、精度和 F1 分数分别为 0.85、0.94 和 0.89。这是通过使用包含患者特征、症状、临床体征和实验室标志物的 25 个特征的特征子集实现的。这些特征包括母亲的 BMI、孕次、产次、是否存在合并症、尼古丁暴露、抗高血压药物治疗、胎儿畸形、产前皮质类固醇治疗、呼吸困难、咽痛、发热、疲劳、症状持续时间、COVID-19 相关肺炎的存在、母亲吸氧的需要、与疾病相关的住院治疗,以及 sFLT-1/PlGF 比值、血小板计数和 LDH 等实验室标志物。
我们提出了第一个专门针对孕妇的 COVID-19 预后管道,同时利用了一个大型 SARS-CoV-2 妊娠数据存储库。我们的模型准确地识别了那些有患重病或临床恶化风险的患者,为推进 COVID-19 孕妇的个体化医学提供了有前途的工具。