Suppr超能文献

冷冻电镜断层成像术揭示的线粒体缢缩的纳米级细节。

Nanoscale details of mitochondrial constriction revealed by cryoelectron tomography.

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California; Department of Biophysics and Biochemistry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California.

出版信息

Biophys J. 2023 Sep 19;122(18):3768-3782. doi: 10.1016/j.bpj.2023.07.030. Epub 2023 Aug 1.

Abstract

Mitochondria adapt to changing cellular environments, stress stimuli, and metabolic demands through dramatic morphological remodeling of their shape, and thus function. Such mitochondrial dynamics is often dependent on cytoskeletal filament interactions. However, the precise organization of these filamentous assemblies remains speculative. Here, we apply cryogenic electron tomography to directly image the nanoscale architecture of the cytoskeletal-membrane interactions involved in mitochondrial dynamics in response to damage. We induced mitochondrial damage via membrane depolarization, a cellular stress associated with mitochondrial fragmentation and mitophagy. We find that, in response to acute membrane depolarization, mammalian mitochondria predominantly organize into tubular morphology that abundantly displays constrictions. We observe long bundles of both unbranched actin and septin filaments enriched at these constrictions. We also observed septin-microtubule interactions at these sites and elsewhere, suggesting that these two filaments guide each other in the cytosolic space. Together, our results provide empirical parameters for the architecture of mitochondrial constriction factors to validate/refine existing models and inform the development of new ones.

摘要

线粒体通过其形状的剧烈形态重塑以及功能来适应不断变化的细胞环境、应激刺激和代谢需求。这种线粒体动力学通常依赖于细胞骨架丝的相互作用。然而,这些丝状组装体的精确组织仍然是推测性的。在这里,我们应用低温电子断层扫描直接成像细胞骨架-膜相互作用的纳米尺度结构,这些相互作用涉及到线粒体动力学对损伤的反应。我们通过膜去极化诱导线粒体损伤,这是一种与线粒体碎片化和自噬相关的细胞应激。我们发现,在急性膜去极化的情况下,哺乳动物线粒体主要组织成管状形态,并且大量显示出收缩。我们在这些收缩处观察到大量未分支的肌动蛋白和隔丝纤维束。我们还观察到这些部位和其他部位的隔丝-微管相互作用,表明这两种纤维在细胞溶胶空间中相互引导。总之,我们的结果为线粒体收缩因子的结构提供了经验参数,以验证/完善现有模型并为新模型的开发提供信息。

相似文献

引用本文的文献

1
In situ cryo-ET visualization of mitochondrial depolarization and mitophagic engulfment.线粒体去极化和线粒体自噬吞噬的原位冷冻电镜观察
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2511890122. doi: 10.1073/pnas.2511890122. Epub 2025 Jul 31.
4
6
Membrane fission via transmembrane contact.通过跨膜接触进行的膜裂变。
Nat Commun. 2024 Mar 30;15(1):2793. doi: 10.1038/s41467-024-47122-w.
7
Mitochondria in disease: changes in shapes and dynamics.线粒体在疾病中的作用:形态和动力学的变化。
Trends Biochem Sci. 2024 Apr;49(4):346-360. doi: 10.1016/j.tibs.2024.01.011. Epub 2024 Feb 23.
9
In situ architecture of Opa1-dependent mitochondrial cristae remodeling.OPA1 依赖性线粒体嵴重塑的原位结构。
EMBO J. 2024 Feb;43(3):391-413. doi: 10.1038/s44318-024-00027-2. Epub 2024 Jan 15.

本文引用的文献

2
Quantitative Cryo-Electron Tomography.定量冷冻电子断层扫描
Front Mol Biosci. 2022 Jul 6;9:934465. doi: 10.3389/fmolb.2022.934465. eCollection 2022.
5
Spatial regulation of microtubule-dependent transport by septin GTPases.微管依赖性运输的隔蛋白 GTP 酶的空间调节。
Trends Cell Biol. 2021 Dec;31(12):979-993. doi: 10.1016/j.tcb.2021.06.004. Epub 2021 Jul 9.
6
Array programming with NumPy.使用 NumPy 进行数组编程。
Nature. 2020 Sep;585(7825):357-362. doi: 10.1038/s41586-020-2649-2. Epub 2020 Sep 16.
7
SciPy 1.0: fundamental algorithms for scientific computing in Python.SciPy 1.0:Python 中的科学计算基础算法。
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
10
The long and short of membrane curvature sensing by septins.通过对隔蛋白膜曲率感应的长与短。
J Cell Biol. 2019 Apr 1;218(4):1083-1085. doi: 10.1083/jcb.201903045. Epub 2019 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验