Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California; Department of Biophysics and Biochemistry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California.
Biophys J. 2023 Sep 19;122(18):3768-3782. doi: 10.1016/j.bpj.2023.07.030. Epub 2023 Aug 1.
Mitochondria adapt to changing cellular environments, stress stimuli, and metabolic demands through dramatic morphological remodeling of their shape, and thus function. Such mitochondrial dynamics is often dependent on cytoskeletal filament interactions. However, the precise organization of these filamentous assemblies remains speculative. Here, we apply cryogenic electron tomography to directly image the nanoscale architecture of the cytoskeletal-membrane interactions involved in mitochondrial dynamics in response to damage. We induced mitochondrial damage via membrane depolarization, a cellular stress associated with mitochondrial fragmentation and mitophagy. We find that, in response to acute membrane depolarization, mammalian mitochondria predominantly organize into tubular morphology that abundantly displays constrictions. We observe long bundles of both unbranched actin and septin filaments enriched at these constrictions. We also observed septin-microtubule interactions at these sites and elsewhere, suggesting that these two filaments guide each other in the cytosolic space. Together, our results provide empirical parameters for the architecture of mitochondrial constriction factors to validate/refine existing models and inform the development of new ones.
线粒体通过其形状的剧烈形态重塑以及功能来适应不断变化的细胞环境、应激刺激和代谢需求。这种线粒体动力学通常依赖于细胞骨架丝的相互作用。然而,这些丝状组装体的精确组织仍然是推测性的。在这里,我们应用低温电子断层扫描直接成像细胞骨架-膜相互作用的纳米尺度结构,这些相互作用涉及到线粒体动力学对损伤的反应。我们通过膜去极化诱导线粒体损伤,这是一种与线粒体碎片化和自噬相关的细胞应激。我们发现,在急性膜去极化的情况下,哺乳动物线粒体主要组织成管状形态,并且大量显示出收缩。我们在这些收缩处观察到大量未分支的肌动蛋白和隔丝纤维束。我们还观察到这些部位和其他部位的隔丝-微管相互作用,表明这两种纤维在细胞溶胶空间中相互引导。总之,我们的结果为线粒体收缩因子的结构提供了经验参数,以验证/完善现有模型并为新模型的开发提供信息。