Suppr超能文献

MIA 是一个用于显微镜图像分析的开源独立深度学习应用程序。

MIA is an open-source standalone deep learning application for microscopic image analysis.

机构信息

German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany.

出版信息

Cell Rep Methods. 2023 Jun 26;3(7):100517. doi: 10.1016/j.crmeth.2023.100517. eCollection 2023 Jul 24.

Abstract

In recent years, the amount of data generated by imaging techniques has grown rapidly, along with increasing computational power and the development of deep learning algorithms. To address the need for powerful automated image analysis tools for a broad range of applications in the biomedical sciences, the Microscopic Image Analyzer (MIA) was developed. MIA combines a graphical user interface that obviates the need for programming skills with state-of-the-art deep-learning algorithms for segmentation, object detection, and classification. It runs as a standalone, platform-independent application and uses open data formats, which are compatible with commonly used open-source software packages. The software provides a unified interface for easy image labeling, model training, and inference. Furthermore, the software was evaluated in a public competition and performed among the top three for all tested datasets.

摘要

近年来,随着计算能力的提高和深度学习算法的发展,成像技术生成的数据量迅速增加。为了满足生物医学科学中广泛应用对强大自动化图像分析工具的需求,开发了显微图像分析器(MIA)。MIA 结合了图形用户界面,无需编程技能,同时还结合了用于分割、目标检测和分类的最先进的深度学习算法。它作为一个独立的、与平台无关的应用程序运行,并使用开放的数据格式,与常用的开源软件包兼容。该软件提供了一个统一的接口,用于方便的图像标记、模型训练和推理。此外,该软件在公开竞赛中进行了评估,在所有测试数据集上均名列前三。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2fb/10391334/c53cadf316c7/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验