Krikid Fatma, Rositi Hugo, Vacavant Antoine
Institut Pascal, CNRS, Clermont Auvergne INP, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
LORIA, CNRS, Université de Lorraine, F-54000 Nancy, France.
J Imaging. 2024 Dec 6;10(12):311. doi: 10.3390/jimaging10120311.
Microscopic image segmentation (MIS) is a fundamental task in medical imaging and biological research, essential for precise analysis of cellular structures and tissues. Despite its importance, the segmentation process encounters significant challenges, including variability in imaging conditions, complex biological structures, and artefacts (e.g., noise), which can compromise the accuracy of traditional methods. The emergence of deep learning (DL) has catalyzed substantial advancements in addressing these issues. This systematic literature review (SLR) provides a comprehensive overview of state-of-the-art DL methods developed over the past six years for the segmentation of microscopic images. We critically analyze key contributions, emphasizing how these methods specifically tackle challenges in cell, nucleus, and tissue segmentation. Additionally, we evaluate the datasets and performance metrics employed in these studies. By synthesizing current advancements and identifying gaps in existing approaches, this review not only highlights the transformative potential of DL in enhancing diagnostic accuracy and research efficiency but also suggests directions for future research. The findings of this study have significant implications for improving methodologies in medical and biological applications, ultimately fostering better patient outcomes and advancing scientific understanding.
微观图像分割(MIS)是医学成像和生物学研究中的一项基础任务,对于细胞结构和组织的精确分析至关重要。尽管其很重要,但分割过程面临重大挑战,包括成像条件的可变性、复杂的生物结构和伪像(如噪声),这可能会影响传统方法的准确性。深度学习(DL)的出现推动了解决这些问题的重大进展。本系统文献综述(SLR)全面概述了过去六年中为微观图像分割而开发的最先进的DL方法。我们批判性地分析了关键贡献,强调了这些方法如何具体应对细胞、细胞核和组织分割中的挑战。此外,我们评估了这些研究中使用的数据集和性能指标。通过综合当前的进展并找出现有方法中的差距,本综述不仅突出了DL在提高诊断准确性和研究效率方面的变革潜力,还为未来研究指明了方向。本研究结果对改进医学和生物学应用中的方法具有重要意义,最终有助于改善患者预后并推动科学认识的进步。