Suppr超能文献

基于肌肉协同收缩的力与阻抗规划的随机最优开环控制理论。

Stochastic optimal open-loop control as a theory of force and impedance planning via muscle co-contraction.

机构信息

Université Paris-Saclay CIAMS, Orsay, France.

CIAMS, Université d'Orléans, Orléans, France.

出版信息

PLoS Comput Biol. 2020 Feb 28;16(2):e1007414. doi: 10.1371/journal.pcbi.1007414. eCollection 2020 Feb.

Abstract

Understanding the underpinnings of biological motor control is an important issue in movement neuroscience. Optimal control theory is a leading framework to rationalize this problem in computational terms. Previously, optimal control models have been devised either in deterministic or in stochastic settings to account for different aspects of motor control (e.g. average behavior versus trial-to-trial variability). While these approaches have yielded valuable insights about motor control, they typically fail in explaining muscle co-contraction. Co-contraction of a group of muscles associated to a motor function (e.g. agonist and antagonist muscles spanning a joint) contributes to modulate the mechanical impedance of the neuromusculoskeletal system (e.g. joint viscoelasticity) and is thought to be mainly under the influence of descending signals from the brain. Here we present a theory suggesting that one primary goal of motor planning may be to issue feedforward (open-loop) motor commands that optimally specify both force and impedance, according to noisy neuromusculoskeletal dynamics and to optimality criteria based on effort and variance. We show that the proposed framework naturally accounts for several previous experimental findings regarding the regulation of force and impedance via muscle co-contraction in the upper-limb. Stochastic optimal (closed-loop) control, preprogramming feedback gains but requiring on-line state estimation processes through long-latency sensory feedback loops, may then complement this nominal feedforward motor command to fully determine the limb's mechanical impedance. The proposed stochastic optimal open-loop control theory may provide new insights about the general articulation of feedforward/feedback control mechanisms and justify the occurrence of muscle co-contraction in the neural control of movement.

摘要

理解生物运动控制的基础是运动神经科学中的一个重要问题。最优控制理论是用计算术语合理化这个问题的一个主要框架。以前,最优控制模型要么在确定性环境中,要么在随机环境中设计,以解释运动控制的不同方面(例如,平均行为与试验到试验的可变性)。虽然这些方法为运动控制提供了有价值的见解,但它们通常无法解释肌肉协同收缩。与运动功能相关的一组肌肉的协同收缩(例如,跨越关节的主动肌和拮抗肌)有助于调节神经肌肉骨骼系统的机械阻抗(例如,关节粘弹性),并且被认为主要受到来自大脑的下行信号的影响。在这里,我们提出了一种理论,表明运动规划的一个主要目标可能是发出前馈(开环)运动命令,根据嘈杂的神经肌肉骨骼动力学和基于努力和方差的最优标准,最优地指定力和阻抗。我们表明,所提出的框架自然解释了上肢肌肉协同收缩调节力和阻抗的几个先前的实验发现。随机最优(闭环)控制预先编程反馈增益,但需要通过长潜伏期感觉反馈回路进行在线状态估计过程,然后可以补充这个名义上的前馈运动命令,以完全确定肢体的机械阻抗。所提出的随机最优开环控制理论可以为前馈/反馈控制机制的一般阐述提供新的见解,并证明肌肉协同收缩在运动的神经控制中的发生是合理的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0200/7065824/c071365061be/pcbi.1007414.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验