González-Lainez Miguel, Jiménez M Victoria, Passarelli Vincenzo, Pérez-Torrente Jesús J
Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009-Zaragoza, Spain.
Dalton Trans. 2023 Aug 22;52(33):11503-11517. doi: 10.1039/d3dt01911j.
Neutral and cationic cyclooctadiene rhodium(I) complexes with a lutidine-derived polydentate ligand having NHC and methoxy side-donor functions, [RhBr(cod)(κC-BuImCHPyCHOMe)] and [Rh(cod)(κC,N-BuImCHPyCHOMe)]PF, have been prepared. Carbonylation of the cationic compound yields the dicarbonyl complex [Rh(CO)(κC,N-BuImCHPyCHOMe)]PF whereas carbonylation of the neutral compound affords a mixture of di- and monocarbonyl neutral complexes [RhBr(CO)(κC-BuImCHPyCHOMe)] and [RhBr(CO)(κC,N-BuImCHPyCHOMe)]. These complexes efficiently catalyze the hydrosilylation of 1-hexyne with HSiMePh with a marked selectivity towards the β-()-vinylsilane product. Catalyst [RhBr(CO)(κC,N-BuImCHPyCHOMe)] showed a superior catalytic performance, in terms of both activity and selectivity, and has been applied to the hydrosilylation of a range of 1-alkynes and phenylacetylene derivatives with diverse hydrosilanes, including HSiMePh, HSiMePh, HSiPh and HSiEt, showing excellent β-() selectivity for the hydrosilylation of linear aliphatic 1-alkynes. Hydrosilylation of internal alkynes, such as diphenylacetylene and 1-phenyl-1-propyne, selectively affords the -addition vinylsilane products. The β-() selectivity of these catalysts contrasts with that of related rhodium(I) catalysts based on 2-picolyl-functionalised NHC ligands, which were reported to be β-() selective. An energy barrier Δ of 19.8 ± 2.0 kcal mol (298 K) has been determined from kinetic studies on the hydrosilylation of 1-hexyne with HSiMePh. DFT studies suggest that the methoxy-methyl group is unlikely to be involved in the activation of hydrosilane, and then hydrosilane activation is likely to proceed a classical Si-H oxidative addition.
已制备出具有NHC和甲氧基侧供体功能的、与卢剔啶衍生的多齿配体形成的中性和阳离子环辛二烯铑(I)配合物,即[RhBr(cod)(κC - BuImCHPyCHOMe)]和[Rh(cod)(κC,N - BuImCHPyCHOMe)]PF。阳离子化合物的羰基化反应生成二羰基配合物[Rh(CO)(κC,N - BuImCHPyCHOMe)]PF,而中性化合物的羰基化反应则得到二羰基和单羰基中性配合物[RhBr(CO)(κC - BuImCHPyCHOMe)]和[RhBr(CO)(κC,N - BuImCHPyCHOMe)]的混合物。这些配合物能有效地催化1 - 己炔与HSiMePh的硅氢化反应,对β - () - 乙烯基硅烷产物具有显著的选择性。催化剂[RhBr(CO)(κC,N - BuImCHPyCHOMe)]在活性和选择性方面均表现出优异的催化性能,并已应用于一系列1 - 炔烃和苯乙炔衍生物与多种硅烷(包括HSiMePh、HSiMePh、HSiPh和HSiEt)的硅氢化反应,对直链脂肪族1 - 炔烃的硅氢化反应表现出优异的β - ()选择性。内炔烃(如二苯乙炔和1 - 苯基 - 1 - 丙炔)的硅氢化反应选择性地生成 - 加成乙烯基硅烷产物。这些催化剂的β - ()选择性与基于2 - 吡啶基官能化NHC配体的相关铑(I)催化剂的选择性形成对比,后者据报道是β - ()选择性的。通过对1 - 己炔与HSiMePh的硅氢化反应的动力学研究,确定了19.8±2.0 kcal mol(298 K)的能垒Δ。密度泛函理论研究表明,甲氧基甲基不太可能参与硅烷的活化,因此硅烷活化可能通过经典的Si - H氧化加成进行。