Department of Computer Application, Noorul Islam Center for Higher Education, Kumaracoil, India.
Research Scholar, Department of Computer Application, Noorul Islam Center for Higher Education, Kumaracoil, India.
Network. 2023 Feb-Nov;34(4):250-281. doi: 10.1080/0954898X.2023.2238070. Epub 2023 Aug 3.
The rapid advancement of technology such as stream processing technologies, deep-learning approaches, and artificial intelligence plays a prominent and vital role, to detect heart rate using a prediction model. However, the existing methods could not handle high -dimensional datasets, and deep feature learning to improvise the performance. Therefore, this work proposed a real-time heart rate prediction model, using K-nearest neighbour (KNN) adhered to the principle component analysis algorithm (PCA) and weighted random forest algorithm for feature fusion (KPCA-WRF) approach and deep CNN feature learning framework. The feature selection, from the fused features, was optimized by ant colony optimization (ACO) and particle swarm optimization (PSO) algorithm to enhance the selected fused features from deep CNN. The optimized features were reduced to low dimensions using the PCA algorithm. The significant straight heart rate features are plotted by capturing out nearest similar data point values using the algorithm. The fused features were then classified for aiding the training process. The weighted values are assigned to those tuned hyper parameters (feature matrix forms). The optimal path and continuity of the weighted feature representations are moved using the random forest algorithm, in K-fold validation iterations.
诸如流处理技术、深度学习方法和人工智能等技术的快速发展,在使用预测模型检测心率方面发挥着突出和重要的作用。然而,现有的方法无法处理高维数据集,也无法进行深度特征学习以提高性能。因此,这项工作提出了一种实时心率预测模型,使用 K-最近邻 (KNN) 遵循主成分分析算法 (PCA) 和加权随机森林算法进行特征融合 (KPCA-WRF) 方法和深度卷积神经网络特征学习框架。特征选择是通过蚁群优化 (ACO) 和粒子群优化 (PSO) 算法对融合特征进行优化,以增强从深度卷积神经网络中选择的融合特征。使用 PCA 算法将优化后的特征降维到低维。通过使用算法捕捉最近的相似数据点值,绘制出重要的直线心率特征。然后对融合特征进行分类,以辅助训练过程。加权值被分配给那些调整后的超参数(特征矩阵形式)。在 K 折验证迭代中,使用随机森林算法移动加权特征表示的最优路径和连续性。